首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   379篇
  免费   10篇
  389篇
  2023年   3篇
  2022年   5篇
  2021年   6篇
  2020年   13篇
  2019年   13篇
  2018年   7篇
  2017年   11篇
  2016年   6篇
  2015年   19篇
  2014年   21篇
  2013年   31篇
  2012年   18篇
  2011年   19篇
  2010年   18篇
  2009年   15篇
  2008年   27篇
  2007年   21篇
  2006年   15篇
  2005年   6篇
  2004年   14篇
  2003年   10篇
  2002年   8篇
  2001年   4篇
  2000年   4篇
  1999年   8篇
  1998年   4篇
  1996年   2篇
  1995年   3篇
  1993年   4篇
  1992年   4篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1971年   2篇
  1970年   2篇
  1969年   1篇
  1967年   1篇
  1965年   2篇
排序方式: 共有389条查询结果,搜索用时 15 毫秒
1.
2.
The ability of an RNA virus to exist as a population of genetically distinct variants permits the virus to overcome events during infections that would otherwise limit virus multiplication or drive the population to extinction. Viral genetic diversity is created by the ribonucleotide misincorporation frequency of the viral RNA-dependent RNA polymerase (RdRp). We have identified a poliovirus (PV) RdRp derivative (H273R) possessing a mutator phenotype. GMP misincorporation efficiency for H273R RdRp in vitro was increased by 2–3-fold that manifested in a 2–3-fold increase in the diversity of the H273R PV population in cells. Circular sequencing analysis indicated that some mutations were RdRp-independent. Consistent with the population genetics theory, H273R PV was driven to extinction more easily than WT in cell culture. Furthermore, we observed a substantial reduction in H273R PV virulence, measured as the ability to cause paralysis in the cPVR mouse model. Reduced virulence correlated with the inability of H273R PV to sustain replication in tissues/organs in which WT persists. Despite the attenuated phenotype, H273R PV was capable of replicating in mice to levels sufficient to induce a protective immune response, even when the infecting dose used was insufficient to elicit any visual signs of infection. We conclude that optimal RdRp fidelity is a virulence determinant that can be targeted for viral attenuation or antiviral therapies, and we suggest that the RdRp may not be the only source of mutations in a RNA virus genome.  相似文献   
3.
4.
The urinary bladder of the mouse contracts to several agonists, namely acetylcholine, noradrenaline, adrenaline, histamine, angiotensin, serotonin, purine nucleotides and prostaglandin F2 alpha. Atropine partially reduced the contraction induced by electrical stimulation, whereas propranolol and tolazoline were ineffective. The atropine resistant component of the neurogenic response was reduced by indomethacin. Methysergide and diphenhydramine were ineffective. Desensitization of the bladder by alpha,beta-methylene ATP abolished the response to ATP and greatly reduced the non-adrenergic non-cholinergic component of the neurogenic response. The results suggest that ATP could be the transmitter responsible for the non-cholinergic non-adrenergic contraction of the mouse urinary bladder.  相似文献   
5.
    
BRAF inhibitors improve melanoma patient survival, but resistance invariably develops. Here we report the discovery of a novel BRAF mutation that confers resistance to PLX4032 employing whole‐exome sequencing of drug‐resistant BRAFV600K melanoma cells. We further describe a new screening approach, a genome‐wide piggyBac mutagenesis screen that revealed clinically relevant aberrations (N‐terminal BRAF truncations and CRAF overexpression). The novel BRAF mutation, a Leu505 to His substitution (BRAFL505H), is the first resistance‐conferring second‐site mutation identified in BRAF mutant cells. The mutation replaces a small nonpolar amino acid at the BRAF‐PLX4032 interface with a larger polar residue. Moreover, we show that BRAFL505H, found in human prostate cancer, is itself a MAPK‐activating, PLX4032‐resistant oncogenic mutation. Lastly, we demonstrate that the PLX4032‐resistant melanoma cells are sensitive to novel, next‐generation BRAF inhibitors, especially the ‘paradox‐blocker’ PLX8394, supporting its use in clinical trials for treatment of melanoma patients with BRAF‐mutations.  相似文献   
6.
7.
    
Forest restoration is most efficient if it can take advantage of facilitative interactions between established vegetation and planted trees. However, positive and negative interactions have been identified in a number of plant communities. After centuries of anthropogenic fires, forest recovery has been extremely slow in southern bog forests previously dominated by the slow‐growing and vulnerable conifer Pilgerodendron uviferum on Chiloé Island, Chile. Today, the landscape is dominated by secondary shrublands with scattered patches of Sphagnum moss and limited natural tree regeneration. We hypothesized that the retention of secondary shrubs facilitates the early performance of P. uviferum restoration plantings by providing better microsite conditions. To test this hypothesis, we compared the response of seedlings planted on sites prepared at two levels of intervention: after shrubs had been removed or where shrubs were retained. Shrub retention showed a nurse‐plant effect on P. uviferum seedlings 4 years after planting, which resulted in reduced physiological stress (measured as Fv/Fm) for seedlings, as well as reduced browsing. Consequently, the seedlings growing in areas with shrub retention had larger height increment and higher vitality than those in areas where shrubs had been removed. Thus, the more open micro‐site conditions created by shrub removal resulted in generally poorer seedling performance, although seedling mortality—which was low overall (approximately 2–4%)—showed no significant difference between the two levels of intervention. These findings have direct implications for the restoration of slow‐growing conifers that can tolerate extreme wet conditions in highly degraded forests.  相似文献   
8.
9.

Key message

Tan spot susceptibility is conferred by multiple interactions of necrotrophic effector and host sensitivity genes.

Abstract

Tan spot of wheat, caused by Pyrenophora tritici-repentis, is an important disease in almost all wheat-growing areas of the world. The disease system is known to involve at least three fungal-produced necrotrophic effectors (NEs) that interact with the corresponding host sensitivity (S) genes in an inverse gene-for-gene manner to induce disease. However, it is unknown if the effects of these NE–S gene interactions contribute additively to the development of tan spot. In this work, we conducted disease evaluations using different races and quantitative trait loci (QTL) analysis in a wheat recombinant inbred line (RIL) population derived from a cross between two susceptible genotypes, LMPG-6 and PI 626573. The two parental lines each harbored a single known NE sensitivity gene with LMPG-6 having the Ptr ToxC sensitivity gene Tsc1 and PI 626573 having the Ptr ToxA sensitivity gene Tsn1. Transgressive segregation was observed in the population for all races. QTL mapping revealed that both loci (Tsn1 and Tsc1) were significantly associated with susceptibility to race 1 isolates, which produce both Ptr ToxA and Ptr ToxC, and the two genes contributed additively to tan spot susceptibility. For isolates of races 2 and 3, which produce only Ptr ToxA and Ptr ToxC, only Tsn1 and Tsc1 were associated with tan spot susceptibility, respectively. This work clearly demonstrates that tan spot susceptibility in this population is due primarily to two NE–S interactions. Breeders should remove both sensitivity genes from wheat lines to obtain high levels of tan spot resistance.
  相似文献   
10.
It is known that skin releases volatile organic compounds to the environment, and also that its emission pattern changes with aging of the skin. It could be considered, that these compounds are intermediaries in cell metabolism, since many intermediaries of metabolic pathways have a volatile potential. In this work, a simple and non-destructive method consisting of SPME sampling and GC/MS analysis was developed to identify volatile organic emanations from cell cultures. This technique, applied to skin cells culture, indicates that the cells or cell metabolism produce several skin emissions. Chemometric analysis was performed in order to explore the relationship between a volatile profile and the senescence of cell cultures. Volatile profiles were different for cell cultures in different degrees of senescence, indicating that volatile compound patterns could be used to provide information about the age of skin cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号