首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   32篇
  2021年   1篇
  2018年   4篇
  2017年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2005年   2篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   25篇
  1988年   3篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1974年   1篇
排序方式: 共有68条查询结果,搜索用时 15 毫秒
1.
Characterization of a human ''midisatellite'' sequence.   总被引:8,自引:0,他引:8       下载免费PDF全文
We have examined the structure and DNA sequence of a human genomic locus that consists of a large hypervariable region made up of repeats of a simple sequence. With several restriction enzymes, the locus shows many restriction fragments that vary quantitatively as well as qualitatively. Other restriction enzymes produce only a single, high-molecular-weight fragment at this locus. Almost all of the fragments are revealed with a simple sequence probe. Southern transfers of the high-molecular-weight restriction fragments produced by the restriction enzymes NotI and SfiI, resolved by pulsed-field gel electrophoresis, gave at most two fragments, demonstrated to be allelic, showing that the majority of the restriction fragments seen in the complex patterns are at a single locus. The estimated size of the region homologous to the probe varied from 250 to 500 kilobases. DNA sequencing indicated that the region consists of tandem repeats of a 40-base-pair sequence. Some homology was detected to the tandem repeating units of the insulin gene and the zetaglobin pseudogene hypervariable regions, and to the "minisatellite" DNA at the myoglobin locus.  相似文献   
2.
Tuberous sclerosis (TSC) is a dominantly inherited disorder characterized by hamartomas and hamartias in one or more organs, most often in skin, brain, and kidneys. Analysis of the basic genetic defect in tuberous sclerosis would be greatly expedited by definitive determination of the chromosomal location of the TSC gene or genes. We have carried out genetic linkage studies in 15 TSC families, using 34 polymorphic markers including protein markers and DNA markers. Pairwise lod scores were calculated using LIPED, and multipoint analyses were carried out using MENDEL. In the pairwise linkage analysis, using a penetrance value of 90%, a significant positive lod score was obtained with MCT128.1 (D11S144), 11q22-11q23, Zmax 3.26 at theta = 0.08. The tyrosinase probe TYR (11q14-11q22) gave a maximum lod score of 2.88 at theta = 0. In the multipoint analyses the most likely order is (TYR,TSC)-MCT128.1-HHH172. Homogeneity analysis was carried out using the USERM9 subprogram of MENDEL, which conducts the admixture test of C. Smith (1963, Ann. Hum. Genet. 27: 175-182). This test provided no evidence for genetic heterogeneity (that is, non-11-linked families) in this data set.  相似文献   
3.
Linkage studies in X-linked Alport's syndrome   总被引:1,自引:0,他引:1  
Summary Four kindreds segregating for Alport's syndrome (ASLN) compatible with a X-linked inheritance were studied for linkage with polymorphic markers of the human X chromosome. No recombinant was observed between the ASLN locus and the DXS101 and DXS94 loci, the maximum lod scores were z=3.93 and 3.50 respectively. Linkage data between the ASLN locus and the other genetic markers used in the present study are in keeping with the assignment of the mutation to the proximal Xq arm.  相似文献   
4.
Summary Ataxia-telangiectasia (A-T) is a progressive autosomal recessive disease featuring neurodegeneration, immunodeficiency, chromosomal instability, radiation sensitivity and a highly increased proneness to cancer. A-T is ethnically widespread and genetically heterogeneous, as indicated by the existence of four complementation groups in this disease. Several A-T-like genetic diseases share various clinical and cellular characteristics with A-T. By using linkage analysis to study North American and Turkish A-O families, the ATA (A-T, complementation group A) gene has been mapped to chromosome 11q23. A number of Israeli Arab A-T patients coming from large, highly inbred families were assigned to group A In one of these families, an additional autosomal recessive disease was identified, characterized by ataxia, hypotonia, microcephaly and bilateral congenital cataracts. In two patients with this syndrome, normal levels of serum immunoglobulins and alpha-fetoprotein, chromosomal stability in peripheral blood lymphocytes and skin fibroblasts, and normal cellular response to treatments with X-rays and the radiomimetic drug neocarzinostatin indicated that this disease does not share, with A-T, any additional features other than ataxia. These tests also showed that another patient in this family, who is also mentally retarded, is affected with both disorders. This conclusion was further supported by linkage analysis with 11q23 markers. Lod scores between A-O and these markers, cumulated over three large Arab families, were significant and confirmed the localization of the ATA gene to aq23. However, another Druze family unassigned to a specific complementation group, showed several recombinants between A-T and the same markers, leaving the localization of the A-T gene in this family open.  相似文献   
5.
The creation of a comprehensive genetic map in human has been limited by the lack of highly polymorphic markers spaced evenly throughout the human genome. We have utilized yeast artificial chromosomes (YAC) containing large human DNA inserts to help identify highly polymorphic (CA)n repeats at a chosen locus. The DNA of a YAC containing the locus was subcloned in M13 vectors, and the recombinants were screened at high stringency to detect preferentially long (CA)n repeats (n greater than 20). These repeats, which are the most likely to be highly polymorphic, were then studied to confirm both the level of polymorphism and their precise genetic location. This strategy has permitted the identification of a new, highly polymorphic CA repeat (77% heterozygosity) at the T cell receptor alpha chain (TCRA) locus on chromosome 14q. It provides a powerful marker for assessing the role of this locus in the susceptibility to autoimmune and infectious diseases. This approach should permit the development of highly polymorphic markers at any targeted locus and rapidly improve the current human genetic map.  相似文献   
6.
7.
8.
9.
10.
Association and linkage studies have shown that at least one of the genetic factors involved in susceptibility to insulin-dependent diabetes mellitus (IDDM) is contained within a 4.1-kb region of the insulin gene. Sequence analysis has led to the identification of 10 DNA variants in this region that are associated with increased risk for IDDM. These variants are in strong linkage disequilibrium with each other, and previous studies have failed to distinguish between the variant(s) that cause increased susceptibility to IDDM and others that are associated with the disease because of linkage disequilibrium. To address this problem, we have undertaken a large population study of French diabetics and controls and have analyzed genotype patterns for several of the variant sites simultaneously. This has led to the identification of a subset consisting of four variants (−2733AC, −23HphI, −365VNTR, and +1140AC), at least one of which appears to be directly implicated in disease susceptibility. The multiple-DNA-variant association-analysis approach that is applied here to the problem of identifying potential susceptibility variants in IDDM is likely to be important in studies of many other multifactorial diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号