首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8455篇
  免费   779篇
  国内免费   2篇
  2023年   28篇
  2022年   95篇
  2021年   185篇
  2020年   85篇
  2019年   121篇
  2018年   145篇
  2017年   125篇
  2016年   257篇
  2015年   389篇
  2014年   474篇
  2013年   539篇
  2012年   699篇
  2011年   682篇
  2010年   466篇
  2009年   450篇
  2008年   548篇
  2007年   551篇
  2006年   488篇
  2005年   484篇
  2004年   451篇
  2003年   437篇
  2002年   395篇
  2001年   94篇
  2000年   70篇
  1999年   82篇
  1998年   89篇
  1997年   63篇
  1996年   61篇
  1995年   46篇
  1994年   58篇
  1993年   59篇
  1992年   44篇
  1991年   51篇
  1990年   34篇
  1989年   34篇
  1988年   33篇
  1987年   26篇
  1986年   31篇
  1985年   26篇
  1984年   19篇
  1983年   30篇
  1982年   15篇
  1981年   22篇
  1980年   8篇
  1979年   11篇
  1978年   17篇
  1977年   20篇
  1976年   9篇
  1975年   15篇
  1974年   8篇
排序方式: 共有9236条查询结果,搜索用时 15 毫秒
1.
The murine macrophage inflammatory proteins-1 alpha (MIP-1 alpha) and MIP-1 beta are distinct but closely related cytokines. Partially purified mixtures of the two proteins affect neutrophil function and cause local inflammation and fever. The particular properties of MIP-1 alpha have not been well studied, although it has been identified as being identical to an inhibitor of haemopoietic stem cell growth. We have expressed MIP-1 alpha in yeast cells and purified it to sequence homogeneity. Structural analysis of this biologically active material by circular dichroism and fluorescence spectroscopy confirms that MIP-1 alpha has a very similar secondary and tertiary structure to platelet factor 4 and interleukin 8 with which it shares limited sequence homology. The in-vitro stem cell inhibitory properties have been confirmed using a range of murine progenitor cells including purified bone marrow progenitor cells (FACS-1), the FDCP-mix A4 cell line, and spleen colony forming unit (CFU-S) populations. Plateau levels of inhibition of stem cell growth were achieved using concentrations of 0.15 micrograms/ml MIP-1 alpha. We have also demonstrated that MIP-1 alpha is active in vivo: 5 micrograms of MIP-1 alpha per mouse given as a bolus injection, protects stem cells from subsequent in-vitro killing by tritiated thymidine. MIP-1 alpha was also shown to enhance the proliferation of more committed progenitor granulocyte macrophage-colony forming cells (GM-CFC) in response to granulocyte macrophage-colony stimulating factor (GM-CSF).  相似文献   
2.
A particularly vexing phenomenon within invasion ecology is the occurrence of spontaneous collapses within seemingly well-established exotic populations. Here, we assess the frequency of collapses among 68 exotic bird populations established in Hawaii, Puerto Rico, Los Angeles and Miami. Following other published definitions, we define a ‘collapse’ as a decline in abundance of ≥90 % within ≤10 years that lasts for at least 3 years. We show that 44 of the 68 exotic bird populations have exhibited declines at some point within their time series. Sixteen of the populations declined sufficiently to be defined as collapsed. It took on average 3.8 ± 1.8 years for populations to decline into a collapsed state, and this state persisted on average for 7.1 ± 6.3 years across (collapsed) populations. We compared the severity and duration of declines across all 44 declining populations according to taxonomic Order and geographic region. Neither variable explained substantial variation in the metrics of collapse. Our results indicate that severe, rapid, and persistent population declines may be common among exotic populations. We suggest that incorporating the probability and persistence of collapses into management decisions can inform efforts to enact control or eradication measures. We also suggest that applying our approach to other taxa and locations is crucial for improving our understanding of when and where collapses are likely to occur.  相似文献   
3.
The human blood-brain barrier glucose transport protein (GLUT1) forms homodimers and homotetramers in detergent micelles and in cell membranes, where the GLUT1 oligomeric state determines GLUT1 transport behavior. GLUT1 and the neuronal glucose transporter GLUT3 do not form heterocomplexes in human embryonic kidney 293 (HEK293) cells as judged by co-immunoprecipitation assays. Using homology-scanning mutagenesis in which GLUT1 domains are substituted with equivalent GLUT3 domains and vice versa, we show that GLUT1 transmembrane helix 9 (TM9) is necessary for optimal association of GLUT1-GLUT3 chimeras with parental GLUT1 in HEK cells. GLUT1 TMs 2, 5, 8, and 11 also contribute to a less abundant heterocomplex. Cell surface GLUT1 and GLUT3 containing GLUT1 TM9 are 4-fold more catalytically active than GLUT3 and GLUT1 containing GLUT3 TM9. GLUT1 and GLUT3 display allosteric transport behavior. Size exclusion chromatography of detergent solubilized, purified GLUT1 resolves GLUT1/lipid/detergent micelles as 6- and 10-nm Stokes radius particles, which correspond to GLUT1 dimers and tetramers, respectively. Studies with GLUTs expressed in and solubilized from HEK cells show that HEK cell GLUT1 resolves as 6- and 10-nm Stokes radius particles, whereas GLUT3 resolves as a 6-nm particle. Substitution of GLUT3 TM9 with GLUT1 TM9 causes chimeric GLUT3 to resolve as 6- and 10-nm Stokes radius particles. Substitution of GLUT1 TM9 with GLUT3 TM9 causes chimeric GLUT1 to resolve as a mixture of 6- and 4-nm particles. We discuss these findings in the context of determinants of GLUT oligomeric structure and transport function.  相似文献   
4.
Accumulation of hyperphosphorylated tau in the entorhinal cortex (EC) is one of the earliest pathological hallmarks in patients with Alzheimer’s disease (AD). It can occur before significant Aβ deposition and appears to “spread” into anatomically connected brain regions. To determine whether this early-stage pathology is sufficient to cause disease progression and cognitive decline in experimental models, we overexpressed mutant human tau (hTauP301L) predominantly in layer II/III neurons of the mouse EC. Cognitive functions remained normal in mice at 4, 8, 12 and 16 months of age, despite early and extensive tau accumulation in the EC. Perforant path (PP) axon terminals within the dentate gyrus (DG) contained abnormal conformations of tau even in young EC-hTau mice, and phosphorylated tau increased with age in both the EC and PP. In old mice, ultrastructural alterations in presynaptic terminals were observed at PP-to-granule cell synapses. Phosphorylated tau was more abundant in presynaptic than postsynaptic elements. Human and pathological tau was also detected within hippocampal neurons of this mouse model. Thus, hTauP301L accumulation predominantly in the EC and related presynaptic pathology in hippocampal circuits was not sufficient to cause robust cognitive deficits within the age range analyzed here.  相似文献   
5.
6.
The cause of the pregnancy condition preeclampsia (PE) is thought to be endothelial dysfunction caused by oxidative stress. As abnormal glucose tolerance has also been associated with PE, we use a fluorinated-mimic of this metabolite to establish whether any oxidative damage to lipids and proteins in the erythrocyte membrane has increased cell membrane permeability. Data were acquired using 19F Dynamic-NMR (DNMR) to measure exchange of 3-fluoro-3-deoxyglucose (3-FDG) across the membrane of erythrocytes from 10 pregnant women (5 healthy control women, and 5 from women suffering from PE). Magnetisation transfer was measured using the 1D selective inversion and 2D EXSY pulse sequences, over a range of time delays. Integrated intensities from these experiments were used in matrix diagonalisation to estimate the values of the rate constants of exchange and membrane permeability. No significant differences were observed for the rate of exchange of 3-FDG and membrane permeability between healthy pregnant women and those suffering from PE, leading us to conclude that no oxidative damage had occurred at this carrier-protein site in the membrane.  相似文献   
7.

Background  

It has long been known that rates of synonymous substitutions are unusually low in mitochondrial genes of flowering and other land plants. Although two dramatic exceptions to this pattern have recently been reported, it is unclear how often major increases in substitution rates occur during plant mitochondrial evolution and what the overall magnitude of substitution rate variation is across plants.  相似文献   
8.
9.
10.
We examined the role of the orphan nuclear hormone receptor CoupTFI in mediating cortical development downstream of meningeal retinoic acid signaling. CoupTFI is a regulator of cortical development known to collaborate with retinoic acid (RA) signaling in other systems. To examine the interaction of CoupTFI and cortical RA signaling we utilized Foxc1-mutant mice in which defects in meningeal development lead to alterations in cortical development due to a reduction of RA signaling. By analyzing CoupTFI−/−;Foxc1H/L double mutant mice we provide evidence that CoupTFI is required for RA rescue of the ventricular zone and the neurogenic phenotypes in Foxc1-mutants. We also found that overexpression of CoupTFI in Foxc1-mutants is sufficient to rescue the Foxc1-mutant cortical phenotype in part. These results suggest that CoupTFI collaborates with RA signaling to regulate both cortical ventricular zone progenitor cell behavior and cortical neurogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号