首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   3篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2002年   1篇
  1984年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
Plant material is a rich source of valuable compounds such as flavanones. Their different forms influence bioavailability and biological activity, causing problems with the selection of plant material for specific purposes. The purpose of this research was to determine selected flavanone (eriodictyol, naringenin, liquiritigenin, and hesperetin) enantiomer contents in free form and bonded to glycosides by an RP‐UHPLC‐ESI‐MS/MS method. Different parts (stems, leaves, and flowers) of goldenrod (Solidago virgaurea L.), lucerne (Medicago sativa L.), and phacelia (Phacelia tanacetifolia Benth.) were used. The highest content of eriodictyol was found in goldenrod flowers (13.1 μg/g), where it occurred mainly as the (S)‐enantiomer, and the greatest proportion of the total amount was bonded to glycosides. The richest source of naringenin was found to be lucerne leaves (4.7 μg/g), where it was mainly bonded to glycosides and with the (S)‐enantiomer as the dominant form. Liquiritigenin was determined only in lucerne, where the flowers contained the highest amount (1.2 μg/g), with the (R)‐enantiomer as dominant aglycone form and the (S)‐enantiomer as the dominant glycosylated form. The highest hesperetin content was determined in phacelia leaves (0.38 μg/g), where it was present in the form of a glycoside and only as the (S)‐enantiomer. A comparison of the different analyte forms occurring in different plant parts was performed for the first time.  相似文献   
2.
This study aimed to obtain and characterize an RU-β-CD complex in the context of investigating the possibility of changes in the solubility, stability, antioxidative and microbiological activity as well as permeability of complexated rutin as against its free form. The formation of the RU-β-CD complex via a co-grinding technique was confirmed by using DSC, SEM, FT-IR and Raman spectroscopy, and its geometry was assessed through molecular modeling. It was found that the stability and solubility of the so-obtained complex were greater compared to the free form; however, a slight decrease was observed inits antibacterial potency. An examination of changes in the EPR spectra of thecomplex excluded any reducing effect of complexation on the antioxidative activity of rutin. Considering the prospect of preformulation studies involving RU-β-CD complexes, of significance is also the observed possibility of prolongedly releasing rutin from the complex at a constant level over along period of 20 h, and the fact that twice as much complexated rutin was able topermeate compared to its free form.  相似文献   
3.
Autophagy is a major intracellular degeneration pathway involved in the elimination and recycling of damaged organelles and long-lived proteins by lysosomes. Many of the pathological factors, which trigger neurodegenerative diseases, can perturb the autophagy activity, which is associated with misfolded protein aggregates accumulation in these disorders. Alzheimer’s disease, the first neurodegenerative disorder between dementias, is characterized by two aggregating proteins, β-amyloid peptide (plaques) and τ-protein (tangles). In Alzheimer’s disease autophagosomes dynamically form along neurites within neuronal cells and in synapses but effective clearance of these structures needs retrograde transportation towards the neuronal soma where there is a major concentration of lysosomes. Maturation of autophago-lysosomes and their retrograde trafficking are perturbed in Alzheimer’s disease, which causes a massive concentration of autophagy elements along degenerating neurites. Transportation system is disturbed along defected microtubules in Alzheimer’s disease brains. τ-protein has been found to control the stability of microtubules, however, phosphorylation of τ-protein or an increase in the total level of τ-protein can cause dysfunction of neuronal cells microtubules. Current evidence has shown that autophagy is developing in Alzheimer’s disease brains because of ineffective degradation of autophagosomes, which hold amyloid precursor protein-rich organelles and secretases important for β-amyloid peptides generation from amyloid precursor. The combination of raised autophagy induction and abnormal clearance of β-amyloid peptide-generating autophagic vacuoles creates circumstances helpful for β-amyloid peptide aggregation and accumulation in Alzheimer’s disease. However, the key role of autophagy in Alzheimer’s disease development is still under consideration today. One point of view suggests that abnormal autophagy induction causes a concentration of autophagic vacuoles rich in amyloid precursor protein, β-amyloid peptide and the elements crucial for its formation, whereas other hypothesis points to marred autophagic clearance or even decrease in autophagic effectiveness playing a role in maturation of Alzheimer’s disease. In this review we present the recent evidence linking autophagy to Alzheimer’s disease and the role of autophagic regulation in the development of full-blown Alzheimer’s disease.  相似文献   
4.
The study of sporadic Alzheimer’s disease etiology, now more than ever, needs an infusion of new concepts. Despite ongoing interest in Alzheimer’s disease, the basis of this entity is not yet clear. At present, the best-established and accepted “culprit” in Alzheimer’s disease pathology by most scientists is the amyloid, as the main molecular factor responsible for neurodegeneration in this disease. Abnormal upregulation of amyloid production or a disturbed clearance mechanism may lead to pathological accumulation of amyloid in brain according to the “amyloid hypothesis.” We will critically review these observations and highlight inconsistencies between the predictions of the “amyloid hypothesis” and the published data. There is still controversy over the role of amyloid in the pathological process. A question arises whether amyloid is responsible for the neurodegeneration or if it accumulates because of the neurodegeneration. Recent evidence suggests that the pathophysiology and neuropathology of Alzheimer’s disease comprises more than amyloid accumulation, tau protein pathology and finally brain atrophy with dementia. Nowadays, a handful of researchers share a newly emerged view that the ischemic episodes of brain best describe the pathogenic cascade, which eventually leads to neuronal loss, especially in hippocampus, with amyloid accumulation, tau protein pathology and irreversible dementia of Alzheimer type. The most persuasive evidences come from investigations of ischemically damaged brains of patients and from experimental ischemic brain studies that mimic Alzheimer-type dementia. This review attempts to depict what we know and do not know about the triggering factor of the Alzheimer’s disease, focusing on the possibility that the initial pathological trigger involves ischemic episodes and ischemia-induced gene dysregulation. The resulting brain ischemia dysregulates additionally expression of amyloid precursor protein and amyloid-processing enzyme genes that, in addition, ultimately compromise brain functions, leading over time to the complex alterations that characterize advanced sporadic Alzheimer’s disease. The identification of the genes involved in Alzheimer’s disease induced by ischemia will enable to further define the events leading to sporadic Alzheimer’s disease-related abnormalities. Additionally, knowledge gained from the above investigations should facilitate the elaboration of the effective treatment and/or prevention of Alzheimer’s disease.  相似文献   
5.
We identified several promoters responsible for the expression of regA, which encodes a global virulence regulator in Citrobacter rodentium. Expression of some of the promoters was strongly autoactivated by RegA in conjunction with bicarbonate. Biochemical and mutational analyses were used to determine the consensus sequence of the RegA-binding sites.  相似文献   
6.
7.
8.
9.
Selective androgen receptor modulators (SARMs) now under development can protect against muscle and bone loss without causing prostate growth or polycythemia. 17β-Hydroxyestra-4,9,11-trien-3-one (trenbolone), a potent testosterone analog, may have SARM-like actions because, unlike testosterone, trenbolone does not undergo tissue-specific 5α-reduction to form more potent androgens. We tested the hypothesis that trenbolone-enanthate (TREN) might prevent orchiectomy-induced losses in muscle and bone and visceral fat accumulation without increasing prostate mass or resulting in adverse hemoglobin elevations. Male F344 rats aged 3 mo underwent orchiectomy or remained intact and were administered graded doses of TREN, supraphysiological testosterone-enanthate, or vehicle for 29 days. In both intact and orchiectomized animals, all TREN doses and supraphysiological testosterone-enanthate augmented androgen-sensitive levator ani/bulbocavernosus muscle mass by 35-40% above shams (P ≤ 0.001) and produced a dose-dependent partial protection against orchiectomy-induced total and trabecular bone mineral density losses (P < 0.05) and visceral fat accumulation (P < 0.05). The lowest doses of TREN successfully maintained prostate mass and hemoglobin concentrations at sham levels in both intact and orchiectomized animals, whereas supraphysiological testosterone-enanthate and high-dose TREN elevated prostate mass by 84 and 68%, respectively (P < 0.01). In summary, low-dose administration of the non-5α-reducible androgen TREN maintains prostate mass and hemoglobin concentrations near the level of shams while producing potent myotrophic actions in skeletal muscle and partial protection against orchiectomy-induced bone loss and visceral fat accumulation. Our findings indicate that TREN has advantages over supraphysiological testosterone and supports the need for future preclinical studies examining the viability of TREN as an option for androgen replacement therapy.  相似文献   
10.
The 65 kilodalton heat shock protein (Hsp65) from mycobacterial species elicits immune responses and in some cases protective immunity. Here we have used a DNA sublibrary approach to identify antigenic fragments of Mycobacterium avium Hsp65 and a synthetic peptide approach to delineate CD4+ T cell determinants. A panel of Hsp65 reactive CD4+ T cell clones was established from lymph node cells obtained from BALB/c mice immunized with recombinant Hsp65. The clones were tested for proliferative reactivity against the products of the DNA sublibrary of the hsp65 gene. A T cell epitope, restricted by the I-Ad molecule, was identified within the C-terminal region of Hsp65 and the minimal epitope (amino acid residues 489-503) delineated using overlapping peptides spanning the C-terminal fragment. Additionally, the CD4+ T cell clone recognizing this epitope also responded to native Hsp65 present in M. avium lysates by both proliferation and cytokine production, indicating that the epitope was present and processed similarly both in the native and the recombinant forms of Hsp65. This sequence identified in BALB/c mice (Hsp65 489-503) is identical in other mycobacteria, notably M. tuberculosis, M. bovis and M. leprae, suggesting the epitope may have wider application in murine models of other mycobacterial infections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号