首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2014年   1篇
  2013年   1篇
  2007年   1篇
  1998年   1篇
  1993年   1篇
  1990年   1篇
  1980年   1篇
  1968年   1篇
排序方式: 共有8条查询结果,搜索用时 93 毫秒
1
1.
Porcine pancreatic α-amylase can be fractionated into two components by DEAE-cellulose chromatography and by disc electrophoresis. The basis for fractionation is tentatively ascribed to a charge difference. The two components displayed the same specific activity and their thermal and pH stability, as well as the variation of Vmax and Km with pH, were identical within experimental error. It is concluded that the multiple forms of the amylase are physically distinct, but structurally related, with a common active site.  相似文献   
2.
The interaction between a patient and a ventilator is the major determinant of the amount of respiratory muscle rest achieved by the machine. We are beginning to acquire a better understanding of the mechanisms that underlie this complex interaction, but this information has yet to be integrated into the routine clinical management of ventilator-supported patients. To achieve that goal, we need better techniques of detecting and monitoring patient-ventilation asynchrony, and the development of simple algorithms that can minimize its occurence. Finally, research is needed to determine the occurrence and importance of respiratory muscle fatigue during failed weaning attempts so as to better guide the timing and pace of the weaning process in problematic patients.  相似文献   
3.
4.
5.
The coenzyme A-synthesizing protein complex (CoA-SPC) is a multienzyme complex of Saccharomyces cerevisiae (Bakers' yeast), which has a molecular weight in excess of 200,000 as determined by Sephadex G-200 column chromatography. This multienzyme complex, which is insoluble in the crude yeast cell lysate, has been purified 229-fold. A cellular component of the yeast cell lysate, referred to as t-Factor, with a molecular weight of 400-1000 and chloride ion are involved in the solubilization of CoA-SPC. The CoA-SPC requires L-cysteine, D-pantothenic acid and ATP as substrates. The terminal CoA-SPC-bound intermediate is dephospho-CoA, which is subsequently phosphorylated and released from the complex as CoA. The sequence of reactions for the synthesis of CoA by the CoA-SPC differs significantly from those previously proposed for other systems. It could be that the reaction sequence is unique for the yeast cell.  相似文献   
6.
We hypothesized that patients who fail weaning from mechanical ventilation recruit their inspiratory rib cage muscles sooner than they recruit their expiratory muscles, and that rib cage muscle recruitment is accompanied by recruitment of sternomastoid muscles. Accordingly, we measured sternomastoid electrical activity and changes in esophageal (DeltaPes) and gastric pressure (DeltaPga) in 11 weaning-failure and 8 weaning-success patients. At the start of trial, failure patients exhibited a higher DeltaPga-to-DeltaPes ratio than did success patients (P = 0.05), whereas expiratory rise in Pga was equivalent in the two groups. Between the start and end of the trial, failure patients developed additional increases in DeltaPga-to-DeltaPes ratio (P < 0.0014) and the expiratory rise in Pga also increased (P < 0.004). At the start of trial, sternomastoid activity was present in 8 of 11 failure patients contrasted with 1 of 8 success patients. Over the course of the trial, sternomastoid activity increased by 53.0 +/- 9.3% in the failure patients (P = 0.0005), whereas it did not change in the success patients. Failure patients recruited their respiratory muscles in a sequential manner. The sequence began with activity of diaphragm and greater-than-normal activity of inspiratory rib cage muscles; recruitment of sternomastoids and rib cage muscles approached near maximum within 4 min of trial commencement; expiratory muscles were recruited slowest of all. In conclusion, not only is activity of the inspiratory rib cage muscles increased during a failed weaning trial, but respiratory centers also recruit sternomastoid and expiratory muscles. Extradiaphragmatic muscle recruitment may be a mechanism for offsetting the effects of increased load on a weak diaphragm.  相似文献   
7.
Septic shock is a life-threatening condition that results from exposure to bacterial endotoxin. It is manifested by cardiovascular collapse and mediated by the release of cytokines such as tumor necrosis factor. Some of these cytokines cause the release of vasoactive substances. In the present study, administration of 40 microgram/kg of bacterial endotoxin to dogs caused a 33% decrease in peripheral vascular resistance and a 54% fall in mean arterial blood pressure within 30 to 90 minutes. Vascular resistance and systemic arterial pressure returned to normal within 1.5 minutes after intravenous administration of NG-methyl-L-arginine (20 mg/kg), a potent and selective inhibitor of nitric oxide synthesis. L-Arginine reversed the effect of L-NMA and restored the endotoxin-induced hypotension. Although NG-methyl-L-arginine injection increased blood pressure in control dogs, the hypertensive effect was much greater in endotoxemic dogs (24.8 +/- 2.7 mmHg vs 47.8 +/- 6.8 mmHg, p = 0.01, n = 4). NG-Methyl-L-arginine caused only a modest increase in blood pressure in dogs made hypotensive by continuous intravenous infusion of nitroglycerin (17.1 +/- 5.0 mm Hg, n = 3). These findings suggest that nitric oxide overproduction is an important contributor to endotoxic shock. Moreover, our findings demonstrate for the first time, the utility of nitric oxide synthesis inhibitors in endotoxic shock and suggest that such inhibitors may be of therapeutic value in the treatment of septic shock.  相似文献   
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号