首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   4篇
  2022年   1篇
  2020年   2篇
  2019年   3篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2008年   2篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
2.
The hepatitis C virus (HCV) internal ribosome entry site (IRES) is a highly structured RNA element that directs cap-independent translation of the viral polyprotein. Morpholino antisense oligonucleotides directed towards stem loop IIId drastically reduced HCV IRES activity. Mutagenesis studies of this region showed that the GGG triplet (nucleotides 266 through 268) of the hexanucleotide apical loop of stem loop IIId is essential for IRES activity both in vitro and in vivo. Sequence comparison showed that apical loop nucleotides (UUGGGU) were absolutely conserved across HCV genotypes and the GGG triplet was strongly conserved among related Flavivirus and Pestivirus nontranslated regions. Chimeric IRES elements with IIId derived from GB virus B (GBV-B) in the context of the HCV IRES possess translational activity. Mutations within the IIId stem loop that abolish IRES activity also affect the RNA structure in RNase T(1)-probing studies, demonstrating the importance of correct RNA folding to IRES function.  相似文献   
3.
Xu B  Wang S  Jiang Y  Yang L  Li P  Xie C  Xing J  Ke Z  Li J  Gai J  Yang G  Bao B  Liu Z 《Animal biotechnology》2010,21(4):217-225
Grass carp, Ctenopharyngodon idellus (Valenciennes, 1844), is an economically important species widely cultured in the world, but its genome research resources are largely lacking. The objectives of this study were to construct normalized cDNA libraries for efficient EST analysis, to generate ESTs from these libraries, and to identify EST-related molecular markers such as microsatellites and single nucleotide polymorphisms (SNPs) for genetic analysis of this species. A total of 6,269 ESTs were generated representing 4,815 unique sequences, from which 105 putative microsatellites and 5,228 SNPs were identified. These genome resources provide the material basis for future genetic and functional analyses in this species.  相似文献   
4.
Fundamental breakthroughs in the neurosciences, combined with technical innovations for measuring brain activity, are shedding new light on the neural basis of second language (L2) processing, and on its relationship to native language processing (L1). The long-held assumption that L1 and L2 are necessarily represented in different brain regions in bilinguals has not been confirmed. On the contrary, the available evidence indicates that L1 and L2 are processed by the same neural devices. The neural differences in L1 and L2 representations are only related to the specific computational demands, which vary according to the age of acquisition, the degree of mastery and the level of exposure to each language. Finally, the acquisition of L2 could be considered as a dynamic process, requiring additional neural resources in specific circumstances.  相似文献   
5.
Ryu J  Liu L  Wong TP  Wu DC  Burette A  Weinberg R  Wang YT  Sheng M 《Neuron》2006,49(2):175-182
Dendritic spines show rapid motility and plastic morphology, which may mediate information storage in the brain. It is presently believed that polymerization/depolymerization of actin is the primary determinant of spine motility and morphogenesis. Here, we show that myosin IIB, a molecular motor that binds and contracts actin filaments, is essential for normal spine morphology and dynamics and represents a distinct biophysical pathway to control spine size and shape. Myosin IIB is enriched in the postsynaptic density (PSD) of neurons. Pharmacologic or genetic inhibition of myosin IIB alters protrusive motility of spines, destabilizes their classical mushroom-head morphology, and impairs excitatory synaptic transmission. Thus, the structure and function of spines is regulated by an actin-based motor in addition to the polymerization state of actin.  相似文献   
6.
We have isolated two related Xenopus homologues of the homeotic zinc finger protein Teashirt1 (Tsh1), XTsh1a and XTsh1b. While Drosophila teashirt specifies trunk identity in the fly, the developmental relevance of vertebrate Tsh homologues is unknown. XTsh1a/b are expressed in prospective trunk CNS throughout early neurula stages and later in the migrating cranial neural crest (CNC) of the third arch. In postmigratory CNC, XTsh1a/b is uniformly activated in the posterior arches. Gain- and loss-of-function experiments reveal that reduction or increase of XTsh1 levels selectively inhibits specification of the hindbrain and mid/hindbrain boundary in Xenopus embryos. In addition, both overexpression and depletion of XTsh1 interfere with the determination of CNC segment identity. In transplantation assays, ectopic XTsh1a inhibits the routing of posterior, but not of mandibular CNC streams. The loss of function phenotype could be rescued with low amounts either of XTsh1a or murine Tsh3. Our results demonstrate that proper expression of XTsh1 is essential for segmentally restricted gene expression in the posterior brain and CNC and suggest for the first time that teashirt genes act as positional factors also in vertebrate development.  相似文献   
7.
Recent genome-wide association studies suggest distinct roles for 12 human interferon-alpha (IFN-α) and 3 IFN-λ subtypes that may be elucidated by defining the expression patterns of these sets of genes. To overcome the impediment of high homology among each of the sets, we designed a quantitative real-time PCR assay that incorporates the use of molecular beacon and locked nucleic acid (LNA) probes, and in some instances, LNA oligonucleotide inhibitors. We then measured IFN subtype expression by human peripheral blood mononuclear cells and by purified monocytes, myeloid dendritic cells (mDC), plasmacytoid dendritic cells (pDC), and monocyte-derived macrophages (MDM), and -dendritic cells (MDDC) in response to poly I:C, lipopolysaccharide (LPS), imiquimod and CpG oligonucleotides. We found that in response to poly I:C and LPS, monocytes, MDM and MDDC express a subtype pattern restricted primarily to IFN-β and IFN-λ1. In addition, while CpG elicited expression of all type I IFN subtypes by pDC, imiquimod did not. Furthermore, MDM and mDC highly express IFN-λ, and the subtypes of IFN-λ are expressed hierarchically in the order IFN-λ1 followed by IFN-λ2, and then IFN-λ3. These data support a model of coordinated cell- and ligand-specific expression of types I and III IFN. Defining IFN subtype expression profiles in a variety of contexts may elucidate specific roles for IFN subtypes as protective, therapeutic or pathogenic mediators.  相似文献   
8.
The hepatitis C virus (HCV) internal ribosome entry site (IRES) RNA drives internal initiation of viral protein synthesis during host cell infection. In the tertiary structure of the IRES RNA, two helical junctions create recognition sites for direct binding of the 40S ribosomal subunit and eukaryotic initiation factor 3 (eIF3). The 2.8 A resolution structure of the IIIabc four-way junction, which is critical for binding eIF3, reveals how junction nucleotides interact with an adjacent helix to position regions directly involved in eIF3 recognition. Two of the emergent helices stack to form a nearly continuous A-form duplex, while stacking of the other two helices is interrupted by the insertion of junction residues into the helix minor groove. This distorted stack probably serves as an important recognition surface for the translational machinery.  相似文献   
9.
Mechanism of ribosome recruitment by hepatitis C IRES RNA   总被引:14,自引:5,他引:9       下载免费PDF全文
Many viruses and certain cellular mRNAs initiate protein synthesis from a highly structured RNA sequence in the 5' untranslated region, called the internal ribosome entry site (IRES). In hepatitis C virus (HCV), the IRES RNA functionally replaces several large initiation factor proteins by directly recruiting the 43S particle. Using quantitative binding assays, modification interference of binding, and chemical and enzymatic footprinting experiments, we show that three independently folded tertiary structural domains in the IRES RNA make intimate contacts to two purified components of the 43S particle: the 40S ribosomal subunit and eukaryotic initiation factor 3 (eIF3). We measure the affinity and demonstrate the specificity of these interactions for the first time and show that the high affinity interaction of IRES RNA with the 40S subunit drives formation of the IRES RNA-40S-eIF3 ternary complex. Thus, the HCV IRES RNA recruits 43S particles in a mode distinct from both eukaryotic cap-dependent and prokaryotic ribosome recruitment strategies, and is architecturally and functionally unique from other large folded RNAs that have been characterized to date.  相似文献   
10.
Xenopus cadherin-11 (Xcadherin-11) is an exceptional cadherin family member, which is predominantly expressed in cranial neural crest cells (NCCs). Apart from mediating cell–cell adhesion it promotes cranial NCC migration by initiating filopodia and lamellipodia formation. Here, we demonstrate an unexpected function of Xcadherin-11 in NCC specification by interfering with canonical Wnt/β-catenin signaling. Loss-of-function experiments, using a specific antisense morpholino oligonucleotide against Xcadherin-11, display a nuclear β-catenin localization in cranial NCCs and a broader expression domain of the proto-oncogene cyclin D1 which proceeds c-myc up-regulation. Additionally, we observe an enhanced NCC proliferation and an expansion of specific NCC genes like AP2 and Sox10. Thereby, we could allocate NCC proliferation and specification to different gene functions. To clarify which domain in Xcadherin-11 is required for early NCC development we tested different deletion mutants for their rescue ability in Xcadherin-11 morphants. We identified the cytoplasmic tail, specifically the β-catenin binding domain, to be necessary for proper NCC development. We propose that Xcadherin-11 is necessary for controlled NCC proliferation and early NCC specification in tuning the expression of the canonical Wnt/β-catenin target genes cyclin D1 and c-myc by regulating the concentration of the nuclear pool of β-catenin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号