首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   3篇
  2021年   1篇
  2015年   4篇
  2014年   9篇
  2013年   5篇
  2012年   5篇
  2011年   6篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   6篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1982年   2篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1956年   1篇
  1953年   1篇
排序方式: 共有86条查询结果,搜索用时 250 毫秒
1.
2.
Highlights? Canonical ER stress pathways are activated in central neurons during hypoxia/ischemia ? The ER stress endoribonuclease IRE1α degrades the neurovascular guidance cue netrin-1 ? Neuronal-derived netrin-1 activates a reparative proangiogenic program in microglial cells ? Neuronal ER stress prevents reparative angiogenesis in the ischemic neural retina  相似文献   
3.

Uxmal and Tulum are two important Mayan sites in the Yucatan peninsula. The buildings are mainly composed of limestone and grey/black discoloration is seen on exposed walls and copious greenish biofilms on inner walls. The principal microorganisms detected on interior walls at both Uxmal and Tulum were cyanobacteria; heterotrophic bacteria and filamentous fungi were also present. A dark‐pigmented mitosporic fungus and Bacillus cereus, both isolated from Uxmal, were shown to be acidogenic in laboratory cultures. Cyanobacteria belonging to rock‐degrading genera Synechocystis and Gloeocapsa were identified at both sites. Surface analysis previously showed that calcium ions were present in the biofilms on buildings at Uxmal and Tulum, suggesting the deposition of biosolubilized stone. Apart from their potential to degrade the substrate, the coccoid cyanobacteria supply organic nutrients for bacteria and fungi, which can produce organic acids, further increasing stone degradation.  相似文献   
4.
Prostaglandin E2 (PGE2) is the major primary prostaglandin generated by brain cells. However, the coordination and intracellular localization of the cyclooxygenases (COXs) and prostaglandin E synthases (PGESs) that convert arachidonic acid to PGE2 in brain tissue are not known. We aimed to determine whether microsomal and cytosolic PGES (mPGES-1 and cPGES) colocalize and coordinate activity with either COX-1 or COX-2 in brain tissue, particularly during development. Importantly, we found that cytosolic PGES also associates with microsomes (cPGES-m) from the cerebrum and cerebral vasculature of the pig and rat as well as microsomes from various cell lines; this seemed dependent on the carboxyl terminal 35-amino acid domain and a cysteine residue (C58) of cPGES. In microsomal membranes from the postnatal brain and cerebral microvessels of mature animals, cPGES-m colocalized with both COX-1 and COX-2, whereas mPGES-1 was undetectable in these microsomes. Accordingly, in this cell compartment, cPGES could coordinate its activity with COX-2 and COX-1 (partly inhibited by NS398); albeit in microsomes of the brain microvasculature from newborns, mPGES-1 was also present. In contrast, in nuclei of brain parenchymal and endothelial cells, mPGES-1 and cPGES colocalized exclusively with COX-2 (determined by immunoblotting and immunohistochemistry); these PGESs contributed to conversion of PGH2 into PGE2. Hence, contrary to a previously proposed model of exclusive COX-2/mPGES-1 coordination, COX-2 can coordinate with mPGES-1 and/or cPGES in the brain, depending on the cell compartment and the age group.  相似文献   
5.

Background

This study evaluated the effects of stroke on regulation of cerebral blood flow in response to fluctuations in systemic blood pressure (BP). The autoregulatory dynamics are difficult to assess because of the nonstationarity and nonlinearity of the component signals.

Methods

We studied 15 normotensive, 20 hypertensive and 15 minor stroke subjects (48.0 ± 1.3 years). BP and blood flow velocities (BFV) from middle cerebral arteries (MCA) were measured during the Valsalva maneuver (VM) using transcranial Doppler ultrasound.

Results

A new technique, multimodal pressure-flow analysis (MMPF), was implemented to analyze these short, nonstationary signals. MMPF analysis decomposes complex BP and BFV signals into multiple empirical modes, representing their instantaneous frequency-amplitude modulation. The empirical mode corresponding to the VM BP profile was used to construct the continuous phase diagram and to identify the minimum and maximum values from the residual BP (BPR) and BFV (BFVR) signals. The BP-BFV phase shift was calculated as the difference between the phase corresponding to the BPR and BFVR minimum (maximum) values. BP-BFV phase shifts were significantly different between groups. In the normotensive group, the BFVR minimum and maximum preceded the BPR minimum and maximum, respectively, leading to large positive values of BP-BFV shifts.

Conclusion

In the stroke and hypertensive groups, the resulting BP-BFV phase shift was significantly smaller compared to the normotensive group. A standard autoregulation index did not differentiate the groups. The MMPF method enables evaluation of autoregulatory dynamics based on instantaneous BP-BFV phase analysis. Regulation of BP-BFV dynamics is altered with hypertension and after stroke, rendering blood flow dependent on blood pressure.
  相似文献   
6.
Oxidant stress contributes to the pathogenesis of hypoxic-ischemic encephalopathies. Platelet-activating factor (PAF) is generated during oxidant stress. We studied the vasomotor mode of actions of PAF on periventricular (PV) microvessels of fetal ( approximately 75% of term), newborn (1-3 days), and adult pigs. PAF constricted PV microvessels from fetal (29.27 +/- 2.6%) and newborn (22.14 +/- 3.2%) pigs but was ineffective in adults (<2.5%). Specific [(3)H]PAF binding was greater in fetus and newborn than in adults; a concordant developmental PAF-induced inositol phosphate formation was observed. PAF-induced vasoconstriction was abrogated by thromboxane A(2) (TXA(2)) synthase and receptor inhibitors, calcium channel blockers, and by removal of endothelium; vasoconstriction to TXA(2) mimetic U-46619 did not differ with age. Immunoreactive TXA(2) synthase expression and PAF-evoked TXA(2) formation revealed a fetus> newborn>adult profile. Thus the greater PAF-induced PV microvascular constriction in younger subjects seems attributable to greater PAF receptor density and mostly secondary to TXA(2) formation from endothelium. The resulting decrease in blood flow may contribute to the increased vulnerability of the PV brain regions to oxidant stress-induced injury in immature subjects.  相似文献   
7.
8.
9.
Alzheimer's disease is characterized by deposition of beta-amyloid peptide (Abeta) into plaques in the brain, leading to neuronal toxicity and dementia. Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system can also cause a dementia, and amyloid deposition in the central nervous system is significantly higher in HIV-1-infected individuals compared with uninfected controls. Here we report that Abeta fibrils stimulated, by 5-20-fold, infection of target cells expressing CD4 and an appropriate coreceptor by multiple HIV-1 isolates but did not permit infection of cells lacking these receptors. Abeta enhanced infection at the stage of virus attachment or entry into the cell. Abeta fibrils also stimulated infection by amphotrophic Moloney leukemia virus, herpes simplex virus, and viruses pseudotyped with the envelope glycoprotein of vesicular stomatitis virus. Other synthetic fibril-forming peptides similarly enhanced viral infection and may be useful in gene delivery applications utilizing retroviral vectors. These data suggest that Abeta deposition may increase the vulnerability of the central nervous system to enveloped viral infection and that amyloidogenic peptides could be useful in enhancing gene transfer by enveloped viral vectors.  相似文献   
10.
The class I(A) phosphoinositide 3-kinases (PI3Ks) consist of a 110-kDa catalytic domain and a regulatory subunit encoded by the p85alpha, p85beta, or p55gamma genes. We have determined the effects of disrupting the p85alpha gene on the responses of mast cells stimulated by the cross-linking of Kit and FcepsilonRI, receptors that reflect innate and adaptive responses, respectively. The absence of p85alpha gene products partially inhibited Kit ligand/stem cell factor-induced secretory granule exocytosis, proliferation, and phosphorylation of the serine/threonine kinase Akt. In contrast, p85alpha gene products were not required for FcepsilonRI-initiated exocytosis and phosphorylation of Akt. LY294002, which inhibits all classes of PI3Ks, strongly suppressed Kit- and FcepsilonRI-induced responses in p85alpha -/- mast cells, revealing the contribution of another PI3K family member(s). In contrast to B lymphocytes, mast cell proliferation was not dependent on Bruton's tyrosine kinase, a downstream effector of PI3K, revealing a distinct pathway of PI3K-dependent proliferation in mast cells. Our findings represent the first example of receptor-specific usage of different PI3K family members in a single cell type. In addition, because Kit- but not FcepsilonRI-initiated signaling is associated with mast cell proliferation, the results provide evidence that distinct biologic functions signaled by these two receptors may reflect differential usage of PI3Ks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号