首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   3篇
  2018年   1篇
  2016年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
Little is known on the influence of invasive aquatic weeds on afro‐tropical waterbird communities. We used bird counts in sites of varying floating pennywort Hydrocotyle ranunculoides cover to explore the relationship between the weed and the waterbird community dynamics at Ngamo dam, Antelope Park, Zimbabwe. Waterbird communities in low‐to‐medium weed cover sites were more diverse and abundant compared to sites of high weed cover. In addition to supporting birds such as African Jacana which are able to forage within dense aquatic plants, high weed cover sites were associated with birds whose diets include invertebrates and fish which are likely more abundant and diverse in these sites. In contrast, low‐to‐medium weed cover sites were associated with bird species such as Common Moorhen, Great Egret, Pied Kingfisher and African Fish Eagle which require accessible open water and forage for diving, swimming or wading. The increased bird abundance in low‐to‐medium weed cover sites also likely increases prey for predatory birds. Thus, the negative changes in the waterbird community composition, abundance and diversity in response to increasing floating pennywort cover reflects species‐specific tolerances to floating pennywort and its influence on accessible open water, foraging sites and prey availability.  相似文献   
2.
The ability of Ludwigia stolonifera to thrive in the presence of Eichhornia crassipes was investigated in Lake Naivasha, Kenya. L. stolonifera (indigenous) and E. crassipes (invasive alien) were grown in outdoor experimental boxes in monocultures and mixtures under non-limiting nutrient conditions. An additive series design with eight combinations of planting densities and four replicates was used. Competitive interactions between the two species were determined by assessing the final total biomass and above–below-ground biomass allocation after 98 days of growth. Biomass accumulation and allocation were significantly affected by competition in relation to species, with L. stolonifera accumulating more biomass than E. crassipes. ANOVA analysis indicated that there was no significant difference in Relative Growth Rate (RGR) and root/shoot ratio between monocultures and mixtures with E. crassipes. However, significant differences in RGRs were observed between monocultures and mixtures of L. stolonifera. Multiple regressions on species RGRs revealed that increasing initial biomass of a con-specific neighbour resulted to a greater reduction in species RGR in relation to increasing initial biomass of a hetero-specific neighbour. Thus, a stronger intra- than inter-specific competition coupled with the significantly higher RGR of L. stolonifera relative to that of E. crassipes enabled L. stolonifera to outperform E. crassipes.  相似文献   
3.
Heterogeneity in the transmission rates of pathogens across hosts or environments may produce disease hotspots, which are defined as specific sites, times or species associations in which the infection rate is consistently elevated. Hotspots for avian influenza virus (AIV) in wild birds are largely unstudied and poorly understood. A striking feature is the existence of a unique but consistent AIV hotspot in shorebirds (Charadriiformes) associated with a single species at a specific location and time (ruddy turnstone Arenaria interpres at Delaware Bay, USA, in May). This unique case, though a valuable reference, limits our capacity to explore and understand the general properties of AIV hotspots in shorebirds. Unfortunately, relatively few shorebirds have been sampled outside Delaware Bay and they belong to only a few shorebird families; there also has been a lack of consistent oropharyngeal sampling as a complement to cloacal sampling. In this study we looked for AIV hotspots associated with other shorebird species and/or with some of the larger congregation sites of shorebirds in the old world. We assembled and analysed a regionally extensive dataset of AIV prevalence from 69 shorebird species sampled in 25 countries across Africa and Western Eurasia. Despite this diverse and extensive coverage we did not detect any new shorebird AIV hotspots. Neither large shorebird congregation sites nor the ruddy turnstone were consistently associated with AIV hotspots. We did, however, find a low but widespread circulation of AIV in shorebirds that contrast with the absence of AIV previously reported in shorebirds in Europe. A very high AIV antibody prevalence coupled to a low infection rate was found in both first-year and adult birds of two migratory sandpiper species, suggesting the potential existence of an AIV hotspot along their migratory flyway that is yet to be discovered.  相似文献   
4.
The timing and location of reproduction are fundamental elements of reproductive success for all organisms. Understanding why animals choose to reproduce at particular times and in particular places is also important for our understanding of other aspects of organismal ecology, such as their habitat requirements, movement strategies, and biogeography. Although breeding patterns in waterfowl are relatively well documented, most studies are from northern temperate regions and the influences of location and time of year on breeding in Afrotropical ducks (Anatidae) are poorly understood. We outline six alternative (but not mutually exclusive) hypotheses that might explain where and when Afrotropical ducks choose to breed. To explore these hypotheses, we assembled and analyzed a new database of c. 22,000 breeding records for 16 Afrotropical ducks and one introduced Palearctic species (the Mallard Anas platyrhynchos). The full database is available on line as an appendix to this article. We identified five distinct breeding strategies as well as two outliers. Peak breeding for 9 of 16 indigenous duck species occurs during the dry season. We found no evidence for spatial synchrony or spatial autocorrelation in breeding, suggesting a high level of flexibility in waterfowl responses to prevailing conditions in any given year. More intensive analyses of alternative hypotheses are needed, but our initial analysis suggests that the timing of breeding for the majority of Afrotropical ducks is driven by a combination of resource availability and predation risk.  相似文献   
5.
Competitive abilities of Lagarosiphon major (Ridley) Moss (invasive in Belgium) and native Ceratophyllum demersum L. were assessed experimentally in relation to sediment dredging. We mimicked these conditions by taking undisturbed sediment (‘before dredging’ treatment) and by using restored sediment where the uppermost nutrient rich top layer was removed (‘after dredging’ treatment). Both the species were allowed to grow for seven weeks in monocultures and mixed cultures at different planting densities. Overall, invasive L. major performed better than native C. demersum independent of the characteristics of the growth environment. L. major achieved a higher relative growth rate (RGR) in both treatments based on total length (0.17-0.21 week−1) and weight (0.10-0.19 week−1) compared to C. demersum (length: 0.04-0.07 week−1; weight: 0.03-0.17 week−1). The better performance of L. major was due to a high plasticity under stressful conditions of low free CO2 and high pH. Intraspecific competition and niche partitioning were observed between the two species indicating that species coexistence is favoured instead of competitive exclusion. L. major performed better in the ‘after dredging’ treatment. Consequently, we deduce that sediment dredging will not lead to a decline of the invasive L. major.  相似文献   
6.
Recent outbreaks of highly pathogenic avian influenza virus (AIV) in birds, humans and other mammalian species calls for a better understanding of virus dynamics in wild bird species and populations that act as maintenance hosts. Host ecology influences the transmission of pathogens and can be used to explore and infer pathogen dynamics. Most of the ecological processes proposed to explain AIV transmission in wild birds have been derived from studies conducted in the temperate and boreal regions of the northern hemisphere. We evaluate the role of two key drivers of AIV dynamics in a waterfowl community in Zimbabwe (southern Africa): (1) the recruitment of young birds and (2) the seasonal aggregation of birds. We analyse the seasonal variation of AIV prevalence in waterfowl and overlay these data with the phenology of reproduction and the seasonal variation in the local abundance of these species. We find that the breeding period of southern Afrotropical waterfowl species is more extended and somewhat less synchronized among species in the community than is the case in temperate and boreal waterfowl communities. Young birds are recorded at most times of the year, and these immunologically naïve individuals can therefore act as new hosts for AIV throughout the year within the wild bird population. Although host aggregation peaks in the cold‐dry to hot‐dry season, birds still aggregate throughout the year and this potentially spreads the opportunities for first infection of juveniles and other naïve birds temporally. We did not find a relationship between season, AIV prevalence in waterfowl, the influx of juveniles or the gradual aggregation of birds during the dry season. Therefore, the main drivers of AIV dynamics (juvenile influx and host abundance/aggregation), although present in Afrotropical regions, could not explain the AIV seasonal patterns in our study in contrast to results reported from temperate and boreal regions. These differences imply variation in the risk of AIV circulation in waterfowl and in the risk of spread to poultry, other animals or humans.  相似文献   
7.
We investigated the differential responses of invasive alien Lemna minuta and native Lemna minor to nutrient loading as well as the mechanism of competition between the species. The role of nutrients, species identity, species influence in determining the outcome of competition between the species was estimated using the Relative Growth Rate Difference (RGRD) model. The two species differed in their response to nutrient loading. The native L. minor responded indifferently to nutrient loading. The species Relative Growth Rate (RGR) was 0.10 d−1, 0.11 d−1 and 0.09 d−1 in high, medium and low nutrients, respectively. On the other hand, the invasive L. minuta responded opportunistically to high nutrient availability and had an RGR of 0.13 d−1, 0.10 d−1 and 0.08 d−1 in high, medium and low nutrients, respectively. As a result, the invasive species was dominant in high nutrient availability but lost to the native species at low nutrient availability. The invader formed approximately 60% and less than 50% of the stand final total dry biomass in high and low nutrient availability, respectively. Species RGR were reduced by both intra- and interspecific competition but intraspecific effects were stronger than interspecific effects. On the overall, the species significantly differed in their constant RGR. These differences in RGR between the species (species identity) and the differential response to nutrient loading were the main determinant of change in final biomass composition of these species in mixture. Species influence (competition) only had a small influence on the outcome of competition between the species. The observed species response to nutrient loading could be targeted in management of the invasive species. Lowering nutrients can be proposed to reduce the impact of the invasive L. minuta.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号