首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2022年   1篇
  2021年   1篇
  2012年   2篇
  2011年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2000年   1篇
  1982年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
Summary By selecting for germinating seeds in the progeny of mutagen-treated non-germinating gibberellin responsive dwarf mutants of the ga–1 locus in Arabidopsis thaliana, germinating lines (revertants) could be isolated. About half of the revertants were homozygous recessive for a gene (aba), which probably regulates the presence of abscisic acid (ABA). Arguments for the function of this gene were obtained from lines homozygous recessive for this locus only, obtained by selection from the F2 progeny of revertant X wild-type crosses. These lines are characterized by a reduced seed dormancy, symptoms of withering, increased transpiration and a lowered ABA content in developing and ripe seeds and leaves.Abbreviations ABA Abscisic acid - GA4+7 Mixture of gibberellin A4 and A7 - EMS Ethylmethanesulfonate - NG Non-germinating - G Germinating  相似文献   
2.
3.
Species delimitation among closely related species is challenging because traditional phenotype‐based approaches, for example, using morphology, ecological, or chemical characteristics, may not coincide with natural groupings. With the advent of high‐throughput sequencing, it has become increasingly cost‐effective to acquire genome‐scale data which can resolve previously ambiguous species boundaries. As the availability of genome‐scale data has increased, numerous species delimitation analyses, such as BPP and SNAPP+Bayes factor delimitation (BFD*), have been developed to delimit species boundaries. However, even empirical molecular species delimitation approaches can be biased by confounding evolutionary factors, for example, hybridization/introgression and incomplete lineage sorting, and computational limitations. Here, we investigate species boundaries and the potential for micro‐endemism in a lineage of lichen‐forming fungi, Niebla Rundel & Bowler, in the family Ramalinaceae by analyzing single‐locus and genome‐scale data consisting of (a) single‐locus species delimitation analysis using ASAP, (b) maximum likelihood‐based phylogenetic tree inference, (c) genome‐scale species delimitation models, e.g., BPP and SNAPP+BFD, and (d) species validation using the genealogical divergence index (gdi). We specifically use these methods to cross‐validate results between genome‐scale and single‐locus datasets, differently sampled subsets of genomic data and to control for population‐level genetic divergence. Our species delimitation models tend to support more speciose groupings that were inconsistent with traditional taxonomy, supporting a hypothesis of micro‐endemism, which may include morphologically cryptic species. However, the models did not converge on robust, consistent species delimitations. While the results of our analysis are somewhat ambiguous in terms of species boundaries, they provide a valuable perspective on how to use these empirical species delimitation methods in a nonmodel system. This study thus highlights the challenges inherent in delimiting species, particularly in groups such as Niebla, with complex, relatively recent phylogeographic histories.  相似文献   
4.
In vitro fertilization (IVF) has established itself as an important technique in human assisted reproduction and in livestock improvement. In both humans and livestock the possible long-term effects on health and welfare of offspring born after IVF and in vitro culture to the blastocyst stage are still largely unknown. Epidemiological studies in humans, using data collected for individuals born after normal (i.e. non-assisted) pregnancies, have provided evidence for associations between prenatal life events and adult-life disease. Due to the relatively short time that elapsed since the first IVF baby was born, comparable studies for IVF offspring are not yet possible. However, animal experiments and epidemiological studies with the available data from the livestock industry (mainly dairy cattle) may contribute to a better understanding of the risks involved.  相似文献   
5.
In cholangiocytes, bile salt (BS) uptake via the apical sodium-dependent bile acid transporter (ASBT) may evoke ductular flow by enhancing cAMP-mediated signaling to the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. We considered that ASBT-mediated BS uptake in the distal ileum might also modulate intestinal fluid secretion. Taurocholate (TC) induced a biphasic rise in the short circuit current across ileal tissue, reflecting transepithelial electrogenic ion transport. This response was sensitive to bumetanide and largely abrogated in Cftr-null mice, indicating that it predominantly reflects CFTR-mediated Cl- secretion. The residual response in Cftr-null mice could be attributed to electrogenic ASBT activity, as it matched the TC-coupled absorptive Na+ flux. TC-evoked Cl- secretion required ASBT-mediated TC uptake, because it was blocked by a selective ASBT inhibitor and was restricted to the distal ileum. Suppression of neurotransmitter or prostaglandin release, blocking of the histamine H1 receptor, or pretreatment with 5-hydroxytryptamine did not abrogate the TC response, suggesting that neurocrine or immune mediators of Cl- secretion are not involved. Responses to TC were retained after carbachol treatment and after permeabilization of the basolateral membrane with nystatin, indicating that BS modulate CFTR channel gating rather than the driving force for Cl- exit. TC-induced Cl- secretion was maintained in cGMP-dependent protein kinase II-deficient mice and only partially inhibited by the cAMP-dependent protein kinase inhibitor H89, suggesting a mechanism of CFTR activation different from cAMP or cGMP signaling. We conclude that active BS absorption in the ileum triggers CFTR activation and, consequently, local salt and water secretion, which may serve to prevent intestinal obstruction in the postprandial state.  相似文献   
6.
The von Hippel-Lindau (VHL) protein protects microtubules (MTs) from destabilization by nocodazole treatment. Based on this fixed-cell assay with static end points, VHL has been reported to directly stabilize the MT cytoskeleton. To investigate the dynamic changes in MTs induced by VHL in living cells, we measured the influence of VHL on tubulin turnover using fluorescence recovery after photobleaching (FRAP). To this end, we engineered VHL-deficient renal cell carcinoma cells to constitutively incorporate fluorescently labeled tubulin and to inducibly express VHL. Induction of VHL in these cells resulted in a decrease of tubulin turnover as measured by FRAP at the cell periphery, while minimally influencing MT dynamics around the centrosome. Our data indicates that VHL changes the behavior of MTs dependent on their subcellular localization implying a role for VHL in cellular processes such as migration, polarization, and cell-cell interactions. Here we propose a complementary method to directly measure VHL-induced subcellular changes in microtubule dynamics, which may serve as a tool to study the effect of MT binding proteins such as VHL.  相似文献   
7.
Most patients with Cystic Fibrosis (CF) carry at least one allele with the F508del mutation, resulting in a CFTR chloride channel protein with a processing, gating and stability defect, but with substantial residual activity when correctly sorted to the apical membranes of epithelial cells. New therapies are therefore aimed at improving the folding and trafficking of F508del CFTR, (CFTR correctors) or at enhancing the open probability of the CFTR chloride channel (CFTR potentiators). Preventing premature breakdown of F508del CFTR is an alternative or additional strategy, which is investigated in this study. We established an ex vivo assay for murine F508del CFTR rescue in native intestinal epithelium that can be used as a pre-clinical test for candidate therapeutics. Overnight incubation of muscle stripped ileum in modified William''s E medium at low temperature (26°C), and 4 h or 6 h incubation at 37°C with different proteasome inhibitors (PI: ALLN, MG-132, epoxomicin, PS341/bortezomib) resulted in fifty to hundred percent respectively of the wild type CFTR mediated chloride secretion (forskolin induced short-circuit current). The functional rescue was accompanied by enhanced expression of the murine F508del CFTR protein at the apical surface of intestinal crypts and a gain in the amount of complex-glycosylated CFTR (band C) up to 20% of WT levels. Sustained rescue in the presence of brefeldin A shows the involvement of a post-Golgi compartment in murine F508del CFTR degradation, as was shown earlier for its human counterpart. Our data show that proteasome inhibitors are promising candidate compounds for improving rescue of human F508del CFTR function, in combination with available correctors and potentiators.  相似文献   
8.
Norez C  Noel S  Wilke M  Bijvelds M  Jorna H  Melin P  DeJonge H  Becq F 《FEBS letters》2006,580(8):2081-2086
In the disease cystic fibrosis (CF), the most common mutation delF508 results in endoplasmic reticulum retention of misfolded CF gene proteins (CFTR). We show that the alpha-1,2-glucosidase inhibitor miglustat (N-butyldeoxynojirimycin, NB-DNJ) prevents delF508-CFTR/calnexin interaction and restores cAMP-activated chloride current in epithelial CF cells. Moreover, miglustat rescues a mature and functional delF508-CFTR in the intestinal crypts of ileal mucosa from delF508 mice. Since miglustat is an orally active orphan drug (Zavesca) prescribed for the treatment of Gaucher disease, our findings provide the basis for future clinical evaluation of miglustat in CF patients.  相似文献   
9.
10.
Binding of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel to the Na(+)/H(+) exchanger 3 regulatory factor 1 (NHERF-1) and NHERF-2 scaffolding proteins has been shown to affect its localization and activation. We have for the first time studied the physiological role of these proteins in CFTR regulation in native tissue by determining CFTR-dependent chloride current in NHERF-1- and NHERF-2-deficient mice. The cAMP- and cGMP-activated chloride current and the basal chloride current in basolaterally permeabilized jejunum were reduced by approximately 30% in NHERF-1-deficient mice but not in NHERF-2-deficient mice. The duodenal bicarbonate secretion was affected in a similar way, whereas no significant differences in CFTR activity were observed in ileum. CFTR abundance as determined by Western blotting was unaltered in jejunal epithelial cells and brush border membranes of NHERF-1 and NHERF-2 mutant mice. However, semi-quantitative detection of CFTR by confocal microscopy showed that the level of apically localized CFTR in jejunal crypts was reduced by approximately 35% in NHERF-1-deficient and NHERF-1/2 double deficient mice but not in NHERF-2 null mice. Together our results indicate that NHERF-1 is required for full activation of CFTR in murine duodenal and jejunal mucosa and that NHERF-1 affects the local distribution of CFTR in or near the plasma membrane. These studies provide the first evidence in native intestinal epithelium that NHERF-1 but not NHERF-2 is involved in the formation of CFTR-containing functional complexes that serve to position CFTR in the crypt apical membrane and/or to optimize its function as a cAMP- and cGMP-regulated anion channel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号