首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   6篇
  98篇
  2022年   2篇
  2021年   2篇
  2017年   2篇
  2016年   7篇
  2015年   4篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   5篇
  2009年   5篇
  2008年   1篇
  2007年   4篇
  2006年   5篇
  2005年   5篇
  2004年   9篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   6篇
  1997年   1篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1977年   1篇
  1938年   1篇
  1934年   1篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
1.
Summary The human -crystallin genes constitute a multigene family whose members are only expressed in the eye lens. The chromosomal location of these sequences has been determined by screening a panel of human/rodent hybrid cell lines containing overlapping subsets of human chromosomes for the presence of human -crystallin sequences. By correlating these genomic hybridization data with the chromosomal constitution of the somatic cell hybrids, all human -crystallin sequences could be assigned to chromosome 2. The use of human/hamster cell hybrids derived from human Burkitt lymphoma cells carrying a reciprocal translocation between human chromosomes 2 and 8, allowed a further localization of the sequences to the region 2p12-qter.  相似文献   
2.
3.
Signal peptides that direct protein export in Bacillus subtilis are overall more hydrophobic than signal peptides in Escherichia coli. To study the importance of signal peptide hydrophobicity for protein export in both organisms, the alpha-amylase AmyQ was provided with leucine-rich (high hydrophobicity) or alanine-rich (low hydrophobicity) signal peptides. AmyQ export was most efficiently directed by the authentic signal peptide, both in E. coli and B. subtilis. The leucine-rich signal peptide directed AmyQ export less efficiently in both organisms, as judged from pulse-chase labelling experiments. Remarkably, the alanine-rich signal peptide was functional in protein translocation only in E. coli. Cross-linking of in vitro synthesized ribosome nascent chain complexes (RNCs) to cytoplasmic proteins showed that signal peptide hydrophobicity is a critical determinant for signal peptide binding to the Ffh component of the signal recognition particle (SRP) or to trigger factor, not only in E. coli, but also in B. subtilis. The results show that B. subtilis SRP can discriminate between signal peptides with relatively high hydrophobicities. Interestingly, the B. subtilis protein export machinery seems to be poorly adapted to handle alanine-rich signal peptides with a low hydrophobicity. Thus, signal peptide hydrophobicity appears to be more critical for the efficiency of early stages in protein export in B. subtilis than in E. coli.  相似文献   
4.
Zusammenfassung An Hand bekannter Daten wird auf aerodynamischer Grundlage eine Theorie des Ruderfluges der Vögel aufgebaut, deren Wesentliches ist, daß fortwährend, also sowohl beim Aufschlag wie beim Niederschlag, ein Vortrieb vom Vogel geleistet wird.Beim Niederschlag entstehen Auftrieb und Vortrieb, beim Aufschlag Abtrieb und Vortrieb.Wie beim Tragflächenflugzeug ist der Vortrieb das erst Nötige, der Auftrieb folgt dann von selbst. Der Vogel muß aber beim Aufschlag, um einen Vortrieb leisten zu können, einen Abtrieb in Kauf nehmen. Es wird an einem Beispiel gezeigt, daß die dadurch auftretenden Hebungen und Senkungen bei der Taube so gering sind, daß sie dem Auge wohl meistens entgehen werden.  相似文献   
5.

Background

Vitamin D is associated with lung function in cross-sectional studies, and vitamin D inadequacy is hypothesized to play a role in the pathogenesis of chronic obstructive pulmonary disease. Further data are needed to clarify the relation between vitamin D status, genetic variation in vitamin D metabolic genes, and cross-sectional and longitudinal changes in lung function in healthy adults.

Methods

We estimated the association between serum 25-hydroxyvitamin D [25(OH)D] and cross-sectional forced expiratory volume in the first second (FEV1) in Framingham Heart Study (FHS) Offspring and Third Generation participants and the association between serum 25(OH)D and longitudinal change in FEV1 in Third Generation participants using linear mixed-effects models. Using a gene-based approach, we investigated the association between 241 SNPs in 6 select vitamin D metabolic genes in relation to longitudinal change in FEV1 in Offspring participants and pursued replication of these findings in a meta-analyzed set of 4 independent cohorts.

Results

We found a positive cross-sectional association between 25(OH)D and FEV1 in FHS Offspring and Third Generation participants (P = 0.004). There was little or no association between 25(OH)D and longitudinal change in FEV1 in Third Generation participants (P = 0.97). In Offspring participants, the CYP2R1 gene, hypothesized to influence usual serum 25(OH)D status, was associated with longitudinal change in FEV1 (gene-based P < 0.05). The most significantly associated SNP from CYP2R1 had a consistent direction of association with FEV1 in the meta-analyzed set of replication cohorts, but the association did not reach statistical significance thresholds (P = 0.09).

Conclusions

Serum 25(OH)D status was associated with cross-sectional FEV1, but not longitudinal change in FEV1. The inconsistent associations may be driven by differences in the groups studied. CYP2R1 demonstrated a gene-based association with longitudinal change in FEV1 and is a promising candidate gene for further studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0238-y) contains supplementary material, which is available to authorized users.  相似文献   
6.
DNA/RNA methylation plays an important role in lung cancer initiation and progression. Liquid biopsy makes use of cells, nucleotides and proteins released from tumor cells into body fluids to help with cancer diagnosis and prognosis. Methylation of circulating tumor DNA (ctDNA) has gained increasing attention as biomarkers for lung cancer. Here we briefly introduce the biological basis and detection method of ctDNA methylation, and review various applications of methylated DNA in body fluids in lung cancer screening, diagnosis, prognosis, monitoring and treatment prediction. We also discuss the emerging role of RNA methylation as biomarkers for cancer.  相似文献   
7.
Secretory proteins perform a variety of important “remote-control” functions for bacterial survival in the environment. The availability of complete genome sequences has allowed us to make predictions about the composition of bacterial machinery for protein secretion as well as the extracellular complement of bacterial proteomes. Recently, the power of proteomics was successfully employed to evaluate genome-based models of these so-called secretomes. Progress in this field is well illustrated by the proteomic analysis of protein secretion by the gram-positive bacterium Bacillus subtilis, for which ~90 extracellular proteins were identified. Analysis of these proteins disclosed various “secrets of the secretome,” such as the residence of cytoplasmic and predicted cell envelope proteins in the extracellular proteome. This showed that genome-based predictions reflect only ~50% of the actual composition of the extracellular proteome of B. subtilis. Importantly, proteomics allowed the first verification of the impact of individual secretion machinery components on the total flow of proteins from the cytoplasm to the extracellular environment. In conclusion, proteomics has yielded a variety of novel leads for the analysis of protein traffic in B. subtilis and other gram-positive bacteria. Ultimately, such leads will serve to increase our understanding of virulence factor biogenesis in gram-positive pathogens, which is likely to be of high medical relevance.  相似文献   
8.
The processing of secretory preproteins by signal peptidases (SPases) is essential for cell viability. As previously shown for Bacillus subtilis, only certain SPases of organisms containing multiple paralogous SPases are essential. This allows a distinction between SPases that are of major and minor importance for cell viability. Notably, the functional difference between major and minor SPases is not reflected clearly in sequence alignments. Here, we have successfully used molecular phylogeny to predict major and minor SPases. The results were verified with SPases from various bacilli. As predicted, the latter enzymes behaved as major or minor SPases when expressed in B. subtilis. Strikingly, molecular modeling indicated that the active site geometry is not a critical parameter for the classification of major and minor Bacillus SPases. Even though the substrate binding site of the minor SPase SipV is smaller than that of other known SPases, SipV could be converted into a major SPase without changing this site. Instead, replacement of amino-terminal residues of SipV with corresponding residues of the major SPase SipS was sufficient for conversion of SipV into a major SPase. This suggests that differences between major and minor SPases are based on activities other than substrate cleavage site selection.  相似文献   
9.
Activity of the Tat machinery for protein transport across the inner membrane of Escherichia coli and the chloroplast thylakoidal membrane requires the presence of three membrane proteins: TatA, TatB and TatC. Here, we show that the Tat machinery of the Gram-positive bacterium Bacillus subtilis is very different because it contains at least two minimal Tat translocases, each composed of one specific TatA and one specific TatC component. A third, TatB-like component is apparently not required. This implies that TatA proteins of B. subtilis perform the functions of both TatA and TatB of E. coli and thylakoids. Notably, the two B. subtilis translocases named TatAdCd and TatAyCy both function as individual, substrate-specific translocases for the twin-arginine preproteins PhoD and YwbN, respectively. Importantly, these minimal TatAC translocases of B. subtilis are representative for the Tat machinery of the vast majority of Gram-positive bacteria, Streptomycetes being the only known exception with TatABC translocases.  相似文献   
10.
Soluble forms of Bacillus signal peptidases which lack their unique amino-terminal membrane anchor are prone to degradation, which precludes their high-level production in the cytoplasm of Escherichia coli. Here, we show that the degradation of soluble forms of the Bacillus signal peptidase SipS is largely due to self-cleavage. First, catalytically inactive soluble forms of this signal peptidase were not prone to degradation; in fact, these mutant proteins were produced at very high levels in E. coli. Second, the purified active soluble form of SipS displayed self-cleavage in vitro. Third, as determined by N-terminal sequencing, at least one of the sites of self-cleavage (between Ser15 and Met16 of the truncated enzyme) strongly resembles a typical signal peptidase cleavage site. Self-cleavage at the latter position results in complete inactivation of the enzyme, as Ser15 forms a catalytic dyad with Lys55. Ironically, self-cleavage between Ser15 and Met16 cannot be prevented by mutagenesis of Gly13 and Ser15, which conform to the -1, -3 rule for signal peptidase recognition, because these residues are critical for signal peptidase activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号