首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7597篇
  免费   603篇
  国内免费   7篇
  2023年   29篇
  2022年   53篇
  2021年   125篇
  2020年   100篇
  2019年   132篇
  2018年   177篇
  2017年   172篇
  2016年   299篇
  2015年   393篇
  2014年   495篇
  2013年   506篇
  2012年   635篇
  2011年   521篇
  2010年   398篇
  2009年   329篇
  2008年   455篇
  2007年   399篇
  2006年   354篇
  2005年   313篇
  2004年   326篇
  2003年   260篇
  2002年   233篇
  2001年   151篇
  2000年   152篇
  1999年   118篇
  1998年   64篇
  1997年   62篇
  1996年   52篇
  1995年   44篇
  1994年   42篇
  1993年   35篇
  1992年   88篇
  1991年   66篇
  1990年   61篇
  1989年   55篇
  1988年   37篇
  1987年   37篇
  1986年   33篇
  1985年   46篇
  1984年   31篇
  1983年   22篇
  1982年   23篇
  1981年   18篇
  1979年   28篇
  1978年   24篇
  1976年   19篇
  1975年   19篇
  1974年   20篇
  1973年   23篇
  1972年   17篇
排序方式: 共有8207条查询结果,搜索用时 46 毫秒
1.
A conceptual model is proposed, describing potential Zostera marina habitats in the Wadden Sea, based on reported data from laboratory, mesocosm and field studies. Controlling factors in the model are dynamics, degree of desiccation, turbidity, nutrients and salinity. A distinction has been made between a higher and a lower zone of potential habitats, each suitable for different morphotypes of Z. marina. The model relates the decline of Z. marina in the Wadden Sea to increased sediment and water dynamics, turbidity, drainage of sediments (resulting in increased degree of desiccation) and total nutrient loads during the twentieth century. The upper and lower delineation of both the higher and the lower zone of potential Z. marina habitats appear to be determined by one or a combination of several of these factors. Environmental changes in one of these factors will therefore influence the borderlines of the zones. The lower zone of Z. marina will be mainly affected by increased turbidity, sediment dynamics, degree of desiccation during low tide and nutrient load. The higher zone will be affected by increases in water and sediment dynamics, desiccation rates and nutrient loads. Potential Z. marina habitats are located above approx. –0.80 m mean sea level (when turbidity remains at the same level as in the early 1990s) in sheltered, undisturbed locations, and preferably where some freshwater influence is present. At locations with a high, near-marine, salinity, the nutrient load has to be low to allow the growth of Z. marina. The sediment should retain enough water during low tide to keep the plants moist. Our results suggest that the return of Z. marina beds within a reasonable time-scale will require not only suitable habitat conditions, but also revegetation measures, as the changes in the environment resulting from the disappearance of Z. marina may impede its recovery, and the natural import of propagules will be unlikely. Furthermore, the lower zone of Z. marina may require a genotype that is no longer found in the Wadden Sea. Received: 26 April 1999 / Received in revised form: 15 October 1999 / Accepted: 16 October 1999  相似文献   
2.
3.
4.
Human erythrocyte and brain acetylcholinesterase are preferentially inhibited by the P(-)-isomers of C(+/-)P(+/-)-soman. The enzymes inhibited by the P(-)-isomers behave similarly with respect to oxime-induced reactivation and aging. HI-6 is the best reactivator for C(+)P(-)-soman-inhibited acetylcholinesterases. Oxime-induced reactivation of the C(-)P(-)-soman-inhibited acetylcholinesterases is much more difficult to achieve.  相似文献   
5.
6.
Compression wood (CW) contains higher quantities of β-1-4-galactan than does normal wood (NW). However, the physiological roles and ultrastructural distribution of β-1-4-galactan during CW formation are still not well understood. The present work investigated deposition of β-1-4-galactan in differentiating tracheids of Cryptomeria japonica during CW formation using an immunological probe (LM5) combined with immunomicroscopy. Our immunolabeling studies clearly showed that differences in the distribution of β-1-4-galactan between NW (and opposite wood, OW) and CW are initiated during the formation of the S1 layer. At this stage, CW was strongly labeled in the S1 layer, whereas no label was observed in the S1 layer of NW and OW. Immunogold labeling showed that β-1-4-galactan in the S1 layer of CW tracheids significantly decreased during the formation of the S2 layer. Most β-1-4-galactan labeling was present in the outer S2 region in mature CW tracheids, and was absent in the inner S2 layer that contained helical cavities in the cell wall. In addition, delignified CW tracheids showed significantly more labeling of β-1-4-galactan in the secondary cell wall, suggesting that lignin is likely to mask β-1-4-galactan epitopes. The study clearly showed that β-1-4-galactan in CW was mainly deposited in the outer portion of the secondary cell wall, indicating that its distribution may be spatially consistent with lignin distribution in CW tracheids of Cryptomeria japonica.  相似文献   
7.
To determine whether the bicyclic monoterpene olefins (-)-alpha-pinene and (-)-beta-pinene arise biosynthetically from the same monoterpene cyclase by alternate deprotonations of a common carbocationic intermediate, the product distributions arising from the acyclic precursor [10-2H3,1-3H]geranyl pyrophosphate were compared with those resulting from incubation of [1-3H]geranyl pyrophosphate with (-)-pinene cyclase from Salvia officinalis. Alteration in proportions of the olefinic products generated by the partially purified pinene cyclase resulted from the suppression of the formation of (-)-beta-pinene (C10 deprotonation) by a primary deuterium isotope effect with a compensating stimulation of the formation of (-)-alpha-pinene (C4 deprotonation). (-)-Pinene cyclase as well as (+)-pinene cyclase also exhibited a decrease in the proportion of the acyclic olefin myrcene generated from the deuteriated substrate, accompanied by a corresponding increase in the commitment to cyclized products. The observation of isotopically sensitive branching, in conjunction with quantitation of the magnitude of the secondary deuterium isotope effect on the overall rate of product formation by the (+)- and (-)-pinene cyclases as well as two other monoterpene cyclases from the same tissue, supports the biosynthetic origin of (-)-alpha-pinene and (-)-beta-pinene by alternative deprotonations of a common enzymatic intermediate. A biogenetic scheme consistent with these results is presented, and alternate proposals for the origin of the pinenes are addressed.  相似文献   
8.
Correct modeling of root water uptake partitioning over depth is an important issue in hydrological and crop growth models. Recently a physically based model to describe root water uptake was developed at single root scale and upscaled to the root system scale considering a homogeneous distribution of roots per soil layer. Root water uptake partitioning is calculated over soil layers or compartments as a function of respective soil hydraulic conditions, specifically the soil matric flux potential, root characteristics and a root system efficiency factor to compensate for within-layer root system heterogeneities. The performance of this model was tested in an experiment performed in two-compartment split-pot lysimeters with sorghum plants. The compartments were submitted to different irrigation cycles resulting in contrasting water contents over time. The root system efficiency factor was determined to be about 0.05. Release of water from roots to soil was predicted and observed on several occasions during the experiment; however, model predictions suggested root water release to occur more often and at a higher rate than observed. This may be due to not considering internal root system resistances, thus overestimating the ease with which roots can act as conductors of water. Excluding these erroneous predictions from the dataset, statistical indices show model performance to be of good quality.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号