首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   11篇
  173篇
  2022年   3篇
  2021年   6篇
  2020年   1篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   4篇
  2014年   6篇
  2013年   12篇
  2012年   8篇
  2011年   12篇
  2010年   5篇
  2009年   11篇
  2008年   15篇
  2007年   5篇
  2006年   8篇
  2005年   6篇
  2004年   5篇
  2003年   6篇
  2002年   8篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1993年   2篇
  1992年   1篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   5篇
  1983年   2篇
  1981年   4篇
排序方式: 共有173条查询结果,搜索用时 15 毫秒
1.
Extracellular serratial protease (56,000 Da) is known to be cytotoxic. Fluorescein isothiocyanate-labeled protease was found to form a complex with human alpha 2-macroglobulin (alpha 2M), and this enzyme-inhibitor complex was purified. The protease was found to be internalized by fibroblasts in culture as a complex with alpha 2M, which resulted in cell destruction. Regeneration of enzyme activity was confirmed in cells after 2-3 h of incubation. Chicken egg-white ovomacroglobulin, a homolog of human alpha 2M, formed a complex with this enzyme similarly and more tightly but failed to exhibit protease activity, cytotoxicity, and internalization into cells.  相似文献   
2.
D-amino acid oxidase (DAAO) is a flavoprotein that catalyzes stereospecifically the oxidative deamination of D-amino acids. The wild-type DAAO is mainly active on neutral D-amino acids, while basic D-amino acids are poor substrates and the acidic ones are virtually not oxidized. To present a comprehensive picture of how the active site residues can modulate the substrate specificity a number of mutants at position M213, Y223, Y238, R285, S335, and Q339 were prepared in the enzyme from the yeast Rhodotorula gracilis. All DAAO mutants have spectral properties similar to those of the wild-type enzyme and are catalytically active, thus excluding an essential role in catalysis; a lower activity on neutral and basic amino acids was observed. Interestingly, an increase in activity and (k(cat)/K(m))(app) ratio on D-aspartate was observed for all the mutants containing an additional charged residue in the active site. The active site of yeast DAAO appears to be a highly evolved scaffold built up through evolution to optimize the oxidative deamination of neutral D-amino acids without limiting its substrate specificity. It is noteworthy, that introduction of a sole, additional, positively charged residue in the active site is sufficient to optimize the reactivity on acidic D-amino acids, giving rise to kinetic properties similar to those of D-aspartate oxidase.  相似文献   
3.
D-Amino acid oxidase (DAAO) is a well-known flavoenzyme that catalyzes the oxygen-dependent oxidative deamination of amino acid D-isomers with absolute stereospecificity, which results in α-keto acids, ammonia and hydrogen peroxide. Recently, the extraordinary functional plasticity of DAAO has become evident; in turn, boosting research on this flavoprotein. Protein engineering has allowed for a redesign of DAAO substrate specificity, oxygen affinity, cofactor binding, stability, and oligomeric state. We review recent developments in utilizing DAAO, including as a biocatalyst for resolving racemic amino acid mixtures, as a tool for biosensing, and as a new mechanism of herbicide resistance. Perspectives for future biotechnological applications of this oxidative biocatalyst are also outlined.  相似文献   
4.
Dalbergoids are typified by crack-entry symbiosis which is evidenced to be Nod Factor (NF)-independent in several Aeschynomene legumes. Natural symbionts of the dalbergoid legume Arachis hypogaea are always NF-producing, prompting us to check whether symbiosis in this legume could also be NF-independent. For this, we followed the symbiosis with two NF-containing bradyrhizobial strains – SEMIA6144, a natural symbiont of Arachis and ORS285, a versatile nodulator of Aeschynomene legumes, along with their corresponding nodulation (nod) mutants. Additionally, we investigated NF-deficient bradyrhizobia like BTAi1, a natural symbiont of Aeschynomene indica and the WBOS strains that were natural endophytes of Oryza sativa, collected from an Arachis-Oryza intercropped field. While SEMIA6144ΔnodC was non-nodulating, both ORS285 and ORS285ΔnodB could induce functional nodulation, although with lower efficiency than SEMIA6144. On the other hand, all the NF-deficient strains – BTAi1, WBOS2 and WBOS4 showed comparable nodulation with ORS285 indicating Arachis to harbour an NF-independent mechanism of symbiosis. Intriguingly, symbiosis in Arachis, irrespective of whether it was NF-dependent or independent, was always associated with the curling or branching of the rosette root hairs at the lateral root bases. Thus, despite being predominantly described as an NF-dependent legume, Arachis does retain a vestigial, less-efficient form of NF-independent symbiosis.  相似文献   
5.
Human genes coding for pLG72 and d-amino acid oxidase have recently been linked to the onset of schizophrenia. pLG72 was proposed as an activator of the human FAD-containing flavoprotein d-amino acid oxidase (hDAAO). In the brain this oxidizes d-serine, a potent activator of N-methyl-d-aspartate receptor. We have investigated the mechanistic regulation of hDAAO by pLG72. Immunohistochemical analyses revealed that hDAAO and pLG72 are both expressed in astrocytes of the human cortex, where they most likely interact, considering their partial overlapping subcellular distribution and their coimmunoprecipitation. We demonstrated that the specific in vitro interaction of the two proteins yields a complex composed of 2 hDAAO homodimers and 2 pLG72 molecules. Binding of pLG72 did not affect the kinetic properties and FAD binding ability of hDAAO; instead, a time-dependent loss of hDAAO activity in the presence of an excess of pLG72 was found. The binding affects the tertiary structure of hDAAO, altering the amount of the active form. We finally demonstrated that overexpression of hDAAO in glioblastoma cells decreases the levels of d-serine, an effect that is null when pLG72 is coexpressed. These data indicate that pLG72 acts as a negative effector of hDAAO. Therefore, a decrease in the synaptic concentration of d-serine as the result of an anomalous increase in hDAAO activity related to hypoexpression of pLG72 may represent a molecular mechanism by which hDAAO and pLG72 are involved in schizophrenia susceptibility.  相似文献   
6.
Cephalosporins currently constitute the most widely prescribed class of antibiotics and are used to treat diseases caused by both Gram-positive and Gram-negative bacteria. Cephalosporins contain a 7-aminocephalosporanic acid (7-ACA) nucleus which is derived from cephalosporin C (CephC). The 7-ACA nucleus is not sufficiently potent for clinical use; however, a series of highly effective antibiotic agents could be produced by modifying the side chains linked to the 7-ACA nucleus. The industrial production of higher-generation semi-synthetic cephalosporins starts from 7-ACA, which is obtained by deacylation of the naturally occurring antibiotic CephC. CephC can be converted to 7-ACA either chemically or enzymatically using d-amino acid oxidase and glutaryl-7-aminocephalosporanic acid acylase. Both these methods show limitation, including the production of toxic waste products (chemical process) and the expense (the enzymatic one). In order to circumvent these problems, attempts have been undertaken to design a single-step means of enzymatically converting CephC to 7-ACA in the course of the past 10 years. The most suitable approach is represented by engineering the activity of a known glutaryl-7-aminocephalosporanic acid acylase such that it will bind and deacylate CephC more preferentially over glutaryl-7-aminocephalosporanic acid. Here, we describe the state of the art in the production of an effective and specific CephC acylase.  相似文献   
7.
A general method is presented here for the determination of the Km, kcat, and kcat/Km of fluorescence resonance energy transfer (FRET) substrates using a fluorescence plate reader. A simple empirical method for correcting for the inner filter effect is shown to enable accurate and undistorted measurements of these very important kinetic parameters. Inner filter effect corrected rates of hydrolysis of a FRET peptide substrate by hepatitis C virus (HCV) NS3 protease at various substrate concentrations enabled measurement of a Km value of 4.4 +/- 0.3 microM and kcat/Km value of 96,500 +/- 5800 M-1 s-1. These values are very close to the HPLC-determined Km value of 4.6 +/- 0.7 microM and kcat/Km value of 92,600 +/- 14,000 M-1 s-1. We demonstrate that the inner filter effect correction of microtiter plate reader velocities enables rapid measurement of Ki and Ki' values and kinetic inhibition mechanisms for HCV NS3 protease inhibitors.  相似文献   
8.
Lacking an efficient process to produce 7-aminocephalosporanic acid from cephalosporin C in a single step, d-amino acid oxidase (DAAO) is of foremost importance in the industrial, two-step process used for this purpose. We report a detailed study on the catalytic properties of the three available DAAOs, namely, a mammalian DAAO and two others from yeast (Rhodotorula gracilis and Trigonopsis variabilis). In comparing the kinetic parameters determined for the three DAAOs, with both cephalosporin C and d-alanine as substrate, the catalytic efficiency of the two enzymes from microorganism is at least 2 orders of magnitude higher than that of pig kidney DAAO. Furthermore, the mammalian enzyme is more sensitive to product inhibition (from hydrogen peroxide and glutaryl-7-aminocephalosporanic acid). Therefore, enzymes from microorganisms appear to be by far more suitable catalysts for bioconversion, although some different minor differences are present between them (e.g., a higher activity of the R. gracilis enzyme when the bioconversion is carried out at saturating oxygen concentration). The mammalian DAAO, even being a poor catalyst, is more stable with respect to temperature than the R. gracilis enzyme in the free form. In any case, for industrial purposes DAAO is used only in the immobilized form where a strong enzyme stabilization occurs.  相似文献   
9.
MOTIVATION: Microarrays are a fast and cost-effective method of performing thousands of DNA hybridization experiments simultaneously. DNA probes are typically used to measure the expression level of specific genes. Because probes greatly vary in the quality of their hybridizations, choosing good probes is a difficult task. If one could accurately choose probes that are likely to hybridize well, then fewer probes would be needed to represent each gene in a gene-expression microarray, and, hence, more genes could be placed on an array of a given physical size. Our goal is to empirically evaluate how successfully three standard machine-learning algorithms-na?ve Bayes, decision trees, and artificial neural networks-can be applied to the task of predicting good probes. Fortunately it is relatively easy to get training examples for such a learning task: place various probes on a gene chip, add a sample where the corresponding genes are highly expressed, and then record how well each probe measures the presence of its corresponding gene. With such training examples, it is possible that an accurate predictor of probe quality can be learned. RESULTS: Two of the learning algorithms we investigate-na?ve Bayes and neural networks-learn to predict probe quality surprisingly well. For example, in the top ten predicted probes for a given gene not used for training, on average about five rank in the top 2.5% of that gene's hundreds of possible probes. Decision-tree induction and the simple approach of using predicted melting temperature to rank probes perform significantly worse than these two algorithms. The features we use to represent probes are very easily computed and the time taken to score each candidate probe after training is minor. Training the na?ve Bayes algorithm takes very little time, and while it takes over 10 times as long to train a neural network, that time is still not very substantial (on the order of a few hours on a desktop workstation). We also report the information contained in the features we use to describe the probes. We find the fraction of cytosine in the probe to be the most informative feature. We also find, not surprisingly, that the nucleotides in the middle of the probes sequence are more informative than those at the ends of the sequence.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号