首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5665篇
  免费   520篇
  2023年   23篇
  2022年   52篇
  2021年   129篇
  2020年   71篇
  2019年   125篇
  2018年   130篇
  2017年   119篇
  2016年   192篇
  2015年   297篇
  2014年   288篇
  2013年   358篇
  2012年   468篇
  2011年   403篇
  2010年   249篇
  2009年   229篇
  2008年   305篇
  2007年   301篇
  2006年   268篇
  2005年   265篇
  2004年   240篇
  2003年   216篇
  2002年   172篇
  2001年   104篇
  2000年   98篇
  1999年   111篇
  1998年   62篇
  1997年   51篇
  1996年   58篇
  1995年   46篇
  1994年   32篇
  1993年   39篇
  1992年   57篇
  1991年   71篇
  1990年   69篇
  1989年   42篇
  1988年   48篇
  1987年   45篇
  1986年   41篇
  1985年   40篇
  1984年   21篇
  1983年   21篇
  1981年   16篇
  1980年   13篇
  1979年   22篇
  1978年   14篇
  1977年   12篇
  1976年   17篇
  1975年   17篇
  1974年   16篇
  1972年   18篇
排序方式: 共有6185条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
Serum proteins [molecular weight (MW) > 10,000] are essential for increased insulin-stimulated glucose transport after in vitro muscle contractions. We investigated the role of the kallikrein-kininogen system, including bradykinin, which is derived from kallikrein (MW > 10,000)-catalyzed degradation of serum protein kininogen (MW > 10,000), on this contraction effect. In vitro electrical stimulation of rat epitrochlearis muscles was performed in 1) rat serum +/- kallikrein inhibitors; 2) human plasma (normal or kallikrein-deficient); 3) rat serum +/- bradykinin receptor-2 inhibitors; or 4) serum-free buffer +/- bradykinin. 3-O-methylglucose transport (3-MGT) was measured 3.5 h later. Serum +/- kallikrein inhibitors tended (P = 0.08) to diminish postcontraction insulin-stimulated 3-MGT. Contractions in normal plasma enhanced insulin-stimulated 3-MGT vs. controls, but contractions in kallikrein-deficient plasma did not. Supplementing rat serum with bradykinin receptor antagonist HOE-140 during contraction did not alter insulin-stimulated 3-MGT. Muscles stimulated to contract in serum-free buffer plus bradykinin did not have enhanced insulin-stimulated 3-MGT. Bradykinin was insufficient for postcontraction-enhanced insulin sensitivity. However, results with kallikrein inhibitors and kallikrein-deficient plasma suggest kallikrein plays a role in this improved insulin action.  相似文献   
5.
6.
Food subsidies have the potential to modify ecosystems and affect the provision of goods and services. Predictable Anthropogenic Food Subsidies (PAFS) modify ecosystems by altering ecological processes and food webs. The global concern over the effects of PAFS in ecosystems has led to development of environmental policies aimed at curbing the production or ultimately banning of PAFS. However, the effects of reducing or banning PAFS are not known. We explore the consequences of PAFS removal in a marine ecosystem under two scenarios: 1) gradual reduction, or 2) an abrupt ban, using a mass balance model to test these hypotheses–The reduction or loss of PAFS will: i) modify trophic levels and food webs through effects on foraging by opportunistic species, ii) increase the resilience of opportunistic species to food shortages, and iii) modify predator–prey interactions through shifts in prey consumption. We found that PAFS lower the trophic levels of opportunistic scavengers and increase their food pathways. Scavengers are able to switch prey when PAFS are reduced gradually but they decline when PAFS are abruptly banned. PAFS reduction to a certain minimal level causes a drop in the ecosystem’s stability. We recommend gradual reduction of PAFS to a minimal level that would maintain the ecosystem’s stability and allow species exploiting PAFS to habituate to the food subsidy reduction.  相似文献   
7.
The involvement of G-proteins in the insulin signal transduction system has been studied in detail using the murine BC3H-1 myocyte system. Pertussis toxin (PT) treatment, previously shown to attenuate some of the metabolic effects of insulin in this cell line (Luttrell, L.M., Hewlett, E.L., Romero, G., and Rogol, A.D. (1988) J. Biol. Chem. 263, 6134-6141), abolished insulin-induced generation of diacylglycerol and inositolglycan mediators with no effects on either the autophosphorylation of the insulin receptor or the phosphorylation of the major endogenous substrates for insulin-stimulated tyrosine kinase activity (pp185 and pp42-45). In vitro ADP-ribosylation and immunoblotting studies suggest that the major PT substrate is a 40-kDa protein of the G alpha family. This protein band did not exhibit detectable tyrosine phosphorylation upon stimulation of either intact cells or cell membranes with insulin. In the presence of low concentrations of GTP, insulin treatment of isolated myocyte plasma membranes resulted in a small (30-40%) but significant stimulation of GTP hydrolysis. This effect was best observed in the presence of small concentrations of sodium dodecyl sulfate. The rate of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) binding to BC3H-1 membranes was also significantly increased in the presence of insulin. The effects of insulin on GTP hydrolysis and GTP gamma S binding were found to be dependent on the concentration of insulin. These effects were not detected in plasma membranes prepared from PT-pretreated BC3H-1 myocytes. In contrast, pretreatment with the B (inactive) subunit of PT did not alter the response of myocyte membranes to insulin. High affinity binding of [125I]iodoinsulin to myocyte plasma membranes was reduced by 60-70% in the presence of guanine nucleotides. Similar effects on insulin binding were produced by PT pretreatment of the cells. In contrast, adenine nucleotides had no effect on insulin binding. Scatchard analysis of the binding data showed that the observed effects of guanine nucleotides and PT on insulin binding resulted either from a reduction in the number of high affinity insulin binding sites or from a significant reduction of the affinity of insulin for its receptor. Low affinity binding sites did not appear to be affected by either guanine nucleotides nor PT pretreatment. These results provide substantial evidence suggestive of a noncovalent interaction between the insulin receptor and a regulatory G-protein system during the process of insulin signaling.  相似文献   
8.
Melanoma depends on, interacts with and reacts to the stroma in which it is embedded, including fibroblasts, extracellular matrix, endothelial cells and immune cells. However, the impact of melanoma on the epidermal tumor microenvironment—the multilayered epithelium of the skin—is poorly understood. Gap junctions are essential for intercellular communication and involved in proliferation, differentiation and homeostasis of keratinocytes. We have shown previously that the gap junction proteins connexin 26 and 30 (Cx26 and Cx30) are induced in the epidermal tumor microenvironment of skin cancers including melanoma. This study compares the extent of Cx26, Cx30 and Cx43 expression in the epidermal microenvironment of melanocytic nevi and melanomas and its association with melanoma thickness, proliferative index of the tumor and its microenvironment, and with 5-year metastasis and survival. We found that induction of Cx26 and Cx30 cell–cell border expression in the epidermal tumor microenvironment correlates to malignancy. Importantly, there was a significant correlation of tumor thickness with the vertical epidermal Cx26 and Cx30 expression pattern and the horizontal Cx26 dissemination. Furthermore, horizontal Cx26 expression correlated with metastasis. Vertical epidermal expression patterns of Cx26 and Cx30 significantly correlated with the proliferative index in the epidermal tumor microenvironment but not with the proliferative index in the tumor. In contrast, Cx43 did not correlate with malignancy, thickness or proliferative index. In summary, here we show for the first time a significant association between the progression of melanoma and alterations in its epithelial tumor microenvironment.  相似文献   
9.
10.
Intracellular accumulation of nitrate, indicative of the operation of an active nitrate transport system, has been measured in intact cells of the cyanobacterium Anacystis nidulans. The ability of the cells to accumulate nitrate was effectively hindered by either ammonium addition or selective inhibition of CO2 fixation by DL-glyceraldehyde, with the effect of either compound being prevented by previously blocking ammonium assimilation. The results support the contention that nitrate utilization in cyanobacteria is regulated at the level of nitrate transport through the concerted action of ammonium assimilation and CO2 fixation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号