首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   6篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   6篇
  2014年   2篇
  2012年   7篇
  2011年   14篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1994年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1968年   1篇
  1956年   1篇
排序方式: 共有83条查询结果,搜索用时 218 毫秒
1.

Deforestation, plantation expansion and other human activities in tropical ecosystems are often associated with biological invasions. These processes have been studied for above-ground organisms, but associated changes below the ground have received little attention. We surveyed rainforest and plantation systems in Jambi province, Sumatra, Indonesia, to investigate effects of land-use change on the diversity and abundance of earthworms—a major group of soil-ecosystem engineers that often is associated with human activities. Density and biomass of earthworms increased 4—30-fold in oil palm and rubber monoculture plantations compared to rainforest. Despite much higher abundance, earthworm communities in plantations were less diverse and dominated by the peregrine morphospecies Pontoscolex corethrurus, often recorded as invasive. Considering the high deforestation rate in Indonesia, invasive earthworms are expected to dominate soil communities across the region in the near future, in lieu of native soil biodiversity. Ecologically-friendly management approaches, increasing structural habitat complexity and plant diversity, may foster beneficial effects of invasive earthworms on plant growth while mitigating negative effects on below-ground biodiversity and the functioning of the native soil animal community.

  相似文献   
2.
Declining arthropod communities have recently gained a lot of attention, with climate and land-use change among the most frequently discussed drivers. Here, we focus on a seemingly underrepresented driver of arthropod community decline: biological invasions. For approximately 12 000 years, earthworms have been absent from wide parts of northern North America, but they have been re-introduced with dramatic consequences. Most studies investigating earthworm-invasion impacts focus on the belowground world, resulting in limited knowledge on aboveground-community changes. We present observational data on earthworm, plant and aboveground arthropod communities in 60 plots, distributed across areas with increasing invasion status (low, medium and high) in a Canadian forest. We analysed how earthworm-invasion status and biomass impact aboveground arthropod community abundance, biomass and species richness, and how earthworm impacts cascade across trophic levels. We sampled approximately 13 000 arthropods, dominated by Hemiptera, Diptera, Araneae, Thysanoptera and Hymenoptera. Total arthropod abundance, biomass and species richness declined significantly from areas of low to those with high invasion status, with reductions of 61, 27 and 18%, respectively. Structural equation models suggest that earthworms directly and indirectly impact arthropods across trophic levels. We show that earthworm invasion can alter aboveground multi-trophic arthropod communities and suggest that belowground invasions might be underappreciated drivers of aboveground arthropod decline.  相似文献   
3.
A key challenge in microbiome research is to predict the functionality of microbial communities based on community membership and (meta)-genomic data. As central microbiota functions are determined by bacterial community networks, it is important to gain insight into the principles that govern bacteria-bacteria interactions. Here, we focused on the growth and metabolic interactions of the Oligo-Mouse-Microbiota (OMM12) synthetic bacterial community, which is increasingly used as a model system in gut microbiome research. Using a bottom-up approach, we uncovered the directionality of strain-strain interactions in mono- and pairwise co-culture experiments as well as in community batch culture. Metabolic network reconstruction in combination with metabolomics analysis of bacterial culture supernatants provided insights into the metabolic potential and activity of the individual community members. Thereby, we could show that the OMM12 interaction network is shaped by both exploitative and interference competition in vitro in nutrient-rich culture media and demonstrate how community structure can be shifted by changing the nutritional environment. In particular, Enterococcus faecalis KB1 was identified as an important driver of community composition by affecting the abundance of several other consortium members in vitro. As a result, this study gives fundamental insight into key drivers and mechanistic basis of the OMM12 interaction network in vitro, which serves as a knowledge base for future mechanistic in vivo studies.Subject terms: Microbiome, Microbial ecology  相似文献   
4.
Mice lacking both c-Jun-NH(2)-terminal kinases (JNK1 and JNK2) were generated to define their roles in development. Jnk1/jnk2 double mutant fetuses die around embryonic day 11 (E11) and were found to display an open neural tube (exencephaly) at the hindbrain level with reduced apoptosis in the hindbrain neuroepithelium at E9.25. In contrast, a dramatic increase in cell death was observed one day later at E10.5 in both the hindbrain and forebrain regions. Moreover, about 25% of jnk1-/-jnk2+/- fetuses display exencephaly probably due to reduced levels of JNK proteins, whereas jnk1+/-jnk2-/- mice are viable. These results assign both pro- and anti-apoptotic functions for JNK1 and JNK2 in the development of the fetal brain.  相似文献   
5.
Transfection of cells with expression vectors is one of the most important tools used to assess the effects of receptor mutations on ligand-induced receptor sequestration. Most transfection methods give rise to transiently or stably transfected clones with a wide range of receptor expression levels that may also depend on the mutations made. It is, therefore, important to determine how the regulation of the receptors depends on their numbers per cell. In Chinese hamster ovary (CHO) and human embryonic kidney (HEK)-293 cells expressing high levels of B(2) kinin receptors, we observed poor sequestration indicated by <20% reduction in cell surface receptor number after 10 min of stimulation with 1 microM bradykinin (BK) compared with >70% in low-expressing cells. Whereas the rate of [(3)H]BK internalization (internalized [(3)H]BK in percentage of total bound [(3)H]BK) in low-expressing cells was independent of the ligand-concentration used, in high-expressing cells a strong rate decrease was observed with higher (>1 nM) concentrations. Lower ligand concentrations, however, led to internalization rates identical to those obtained in low-expressing cells. Transiently transfected HEK and COS-7 cells showed results similar to those of stably high-expressing cells. Our results demonstrate the difficulty in determining the internalization pattern of (mutated) B(2) kinin receptors, and possibly of G protein-coupled receptors in general, using a sequestration assay in high-expressing cells or transiently transfected cells with high numbers of receptors per transfected cell. However, the receptor (mutant)-specific internalization rate can be measured, provided that the ligand concentrations used are below a threshold at which the internalization rate is still independent of the ligand concentration.  相似文献   
6.
7.
The synthesis and the study of two phosphorothiolate derivatives of 3'-azido-2',3'-dideoxythymidine (AZT) bearing a S-pivaloyl-2-thioethyl (tBuSATE) group and glucosyl residues associated to the phosphorus atom by a 2-oxyethyl link, are reported. These derivatives could be considered as prototypes of a new series of nucleotide prodrugs (pronucleotides).  相似文献   
8.
The amount of sample available for clinical and biological proteomic research is often limited and thus significantly restricts clinical and translational research. Recently, we have integrated pressure cycling technology (PCT) assisted sample preparation and SWATH‐MS to perform reproducible proteomic quantification of biopsy‐level tissue samples. Here, we further evaluated the minimal sample requirement of the PCT‐SWATH method using various types of samples, including cultured cells (HeLa, K562, and U251, 500 000 to 50 000 cells) and tissue samples (mouse liver, heart, brain, and human kidney, 3–0.2 mg). The data show that as few as 50 000 human cells and 0.2–0.5 mg of wet mouse and human tissues produced peptide samples sufficient for multiple SWATH‐MS analyses at optimal sample load applied to the system. Generally, the reproducibility of the method increased with decreasing tissue sample amounts. The SWATH maps acquired from peptides derived from samples of varying sizes were essentially identical based on the number, type, and quantity of identified peptides. In conclusion, we determined the minimal sample required for optimal PCT‐SWATH analyses, and found smaller sample size achieved higher quantitative accuracy.  相似文献   
9.
The synthesis of propargylated pentaerythrityl phosphodiester oligomers (PePOs) was achieved using a DNA synthesizer with a bis-propargylated pentaerythritol-based phosphoramidite. An azido fucose derivative was reacted under "click" chemistry conditions activated by microwaves to construct a series of glycosylated PePOs bearing 4, 6, 8, and 10 L-fucose residues. Binding to the fucose-specific bacterial lectin (PA-IIL) was determined for the fucosylated PePOs through an enzyme-linked lectin amplification competition assay. The IC50 values measured are 10-20 times better than for monovalent l-fucose and denotate for a "macromolecular" effect rather than a "cluster" effect.  相似文献   
10.
Silicateins are unique enzymes of sponges (phylum Porifera) that template and catalyze the polymerization of nanoscale silicate to siliceous skeletal elements. These multifunctional spicules are often elaborately shaped, with complex symmetries. They carry an axial proteinaceous filament, consisting of silicatein and the scaffold protein silintaphin-1, which guides silica deposition and subsequent spicular morphogenesis. In vivo, the synthesis of the axial filament very likely proceeds in three steps: (a) assembly of silicatein monomers to form one pentamer; (b) assembly of pentamers to form fractal-like structures; and finally (c) assembly of fractal-like structures to form filaments. The present study was aimed at exploring the effect of self-assembled complexes of silicatein and silintaphin-1 on biosilica synthesis in vitro. Hence, in a comparative approach, recombinant silicatein and recombinant silintaphin-1 were used at different stoichiometric ratios to form axial filaments and to synthesize biosilica. Whereas recombinant silicatein-α reaggregates to randomly organized structures, coincubation of silicatein-α and silintaphin-1 (molecular ratio 4 : 1) resulted in synthetic filaments via fractal-like patterned self-assemblies, as observed by electron microscopy. Concurrently, owing to the concerted action of both proteins, the enzymatic activity of silicatein-α strongly increased by 5.3-fold (with the substrate tetraethyl orthosilicate), leading to significantly enhanced synthesis of biosilica. These results indicate that silicatein-α-mediated biosilicification depends on the concomitant presence of silicatein-α and silintaphin-1. Accordingly, silintaphin-1 might not only enhance the enzymatic activity of silicatein-α, but also accelerate the nonenzymatic polycondensation of the silica product before releasing the fully synthesized biosiliceous polymer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号