首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1987年   1篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
Bonham, A. C., K. S. Kott, and J. P. Joad. Sidestreamsmoke exposure enhances rapidly adapting receptor responses to substance P in young guinea pigs. J. Appl.Physiol. 81(4): 1715-1722, 1996.We determinedthe effect of sidestream tobacco smoke (SS) exposure on responses oflung rapidly adapting receptors (RARs), peak tracheal pressure (Ptr),and arterial blood pressure (ABP) to substance P in young guinea pigs.Guinea pigs were exposed to SS or filtered air fromday 8 to days41-45 of life. They were then anesthetized andgiven three doses of intravenous substance P (1.56-4.94 nmol/kg).SS exposure augmented substance P-evoked increases in RAR activity(P = 0.029 by analysis of variance) but not substance P-evoked increases in peak Ptr or decreases in ABP.Neurokinin 1-receptor blockade (CP-96345, 400 nmol/kg) attenuatedsubstance P-evoked increases in RAR activity(P = 0.001) and ABP(P = 0.009) but not in peak Ptr(P = 0.06). Thus chronic exposure toSS in young guinea pigs exaggerates RAR responsiveness to substance P. The findings may help explain the increased incidence of airwayhyperresponsiveness and cough in children chronically exposed toenvironmental tobacco smoke.

  相似文献   
2.
Bronchopulmonary C fibers defend the lungs against injury from inhaled agents by a central nervous system reflex consisting of apnea, cough, bronchoconstriction, hypotension, and bradycardia. Glutamate is the putative neurotransmitter at the first central synapses in the nucleus of the solitary tract (NTS), but substance P, also released in the NTS, may modulate the transmission. To test the hypothesis that substance P in the NTS augments bronchopulmonary C fiber input and hence reflex output, we stimulated the C fibers with left atrial capsaicin (LA CAP) injections and compared the changes in phrenic nerve discharge, tracheal pressure (TP), arterial blood pressure (ABP), and heart rate (HR) in guinea pigs before and after substance P injections (200 microM, 25 nl) in the NTS. Substance P significantly augmented LA CAP-evoked increases in expiratory time by 10-fold and increases in TP and decreases in ABP and HR by threefold, effects prevented by neurokinin-1 (NK1) receptor antagonism. Thus substance P acting at NTS NK1 receptors can exaggerate bronchopulmonary C fiber reflex output. Because substance P synthesis in vagal airway C fibers may be enhanced in pathological conditions such as allergic asthma, the findings may help explain some of the associated respiratory symptoms including cough and bronchoconstriction.  相似文献   
3.
Children chronically exposed to environmental tobacco smoke (ETS) have more coughs, wheezes, and airway obstruction, which may result in part from stimulation of lung C fibers. We examined the effect of chronic exposure to sidestream tobacco smoke (SS, a surrogate for ETS) on lung C-fiber responsiveness in guinea pigs, in which dynamic compliance (Cdyn), lung resistance, tracheal pressure, arterial blood pressure, and heart rate were also monitored. Guinea pigs were exposed to SS (1 mg/mm(3) total suspended particulates) or filtered air 5 days/wk from 1 to 6 wk of age. They were then anesthetized, and lung C fibers (n = 55), identified by a conduction velocity of <2.0 m/s, were tested for responsiveness to chemical and mechanical stimuli. SS exposure doubled C-fiber responsiveness to left atrial capsaicin (P = 0.02) and lung hyperinflation (P = 0.03) but had no effect on responsiveness to inhaled capsaicin or bradykinin or on baseline activity. The data indicate that chronically exposing young guinea pigs to SS enhances C-fiber sensitivity to certain stimuli and may help explain respiratory symptoms in children exposed to ETS.  相似文献   
4.
J P Joad  T B Casale 《Life sciences》1987,41(13):1577-1584
Quinuclidinyl benzilate, a muscarinic antagonist, has previously been used in its tritiated form ([3H]-QNB) to study the lung muscarinic receptor. We investigated whether a newer iodinated form of QNB ([125I]-QNB) of higher specific activity would be an appropriate ligand to study the human peripheral lung muscarinic receptor. Both the tritiated and iodinated ligands bound specifically to human lung at 23 degrees C. At 37 degrees C the specific binding of [3H]-QNB increased slightly, but no specific binding of [125I]-QNB was found. The data from multiple equilibrium binding experiments covering a wide range of radiolabeled QNB concentrations were combined and analyzed using the computer modeling program, LIGAND. The tritiated QNB identified a single affinity human lung binding site with a Kd of 46 +/- 9 pM and a receptor concentration of 34 +/- 3 fmol/mg protein. The iodinated QNB identified a single higher affinity human lung binding site (Kd = 0.27 +/- 0.32 pM) of much smaller quantity (0.62 +/- 0.06 fmol/mg protein). Competition studies comparing the binding of unlabeled QNB relative to labeled QNB indicated that unlabeled QNB had the same Kd as that measured for [3H]-QNB, but a 5 log greater Kd than that measured for [125I]-QNB. Other muscarinic receptor agonists and antagonists competed with [3H]-QNB, but not [125I]-QNB for binding to muscarinic receptors with the expected magnitude and rank order of potency. We conclude that of the 2 radiolabeled forms of QNB available, only the tritiated form should be used to study the human peripheral lung muscarinic receptor.  相似文献   
5.
The nucleus tractus solitarius (NTS) is the first central nervous system (CNS) site for synaptic contact of the primary afferent fibers from the lungs and airways. The signal processing at these synapses will determine the output of the sensory information from the lungs and airways to all downstream synapses in the reflex pathways. The second-order NTS neurons bring to bear their own intrinsic and synaptic properties to temporally and spatially integrate the sensory information with inputs from local networks, higher brain regions, and circulating mediators, to orchestrate a coherent reflex output. There is growing evidence that NTS neurons share the rich repertoire of forms of plasticity demonstrated throughout the CNS. This review focuses on existing evidence for plasticity in the NTS, potential targets for plasticity in the NTS, and the impact of this plasticity on lung and airway reflexes.  相似文献   
6.
Acute ozone exposure evokes adverse respiratory responses, particularly in children. With repeated ozone exposures, however, despite the persistent lung inflammation and increased sensory nerve excitability, the central nervous system reflex responses, i.e., rapid shallow breathing and decreased lung function, adapt, suggesting changes in central nervous system signaling. We determined whether repeated ozone exposures altered the behavior of nucleus tractus solitarius (NTS) neurons where reflex respiratory motor outputs are first coordinated. Whole cell recordings were performed on NTS neurons in brain stem slices from infant monkeys exposed to filtered air or ozone (0.5 ppm, 8 h/day for 5 days every 14 days for 11 episodes). Although episodic ozone exposure depolarized the membrane potential, increased the membrane resistance, and increased neuronal spiking responses to depolarizing current injections (P < 0.05), it decreased the excitability to vagal sensory fiber activation (P < 0.05), suggesting a diminished responsiveness to sensory transmission, despite overall increases in excitability. Substance P, implicated in lung and NTS signaling, contributed to the increased responsiveness to current injections but not to the diminished sensory transmission. The finding that NTS neurons undergo plasticity with repeated ozone exposures may help to explain the adaptation of the respiratory motor responses.  相似文献   
7.
Rat and monkey are species that are used in models of human airway hyperresponsiveness. However, the wall structures of rat and monkey airways are different from each other, with that of the monkey more closely resembling that of humans. We hypothesized that differences in wall structure would explain differences in airway responsiveness. Using videomicrometry, we measured airway luminal area in lung slices to compare proximal and distal airway responsiveness to methacholine in the rat and monkey. The airway type was then histologically identified. Proximal airways of the young rat and monkey were equally responsive to methacholine. In contrast, respiratory bronchioles of monkeys were less responsive than were their proximal bronchi, whereas the distal bronchioles of rats were more responsive than their proximal bronchioles. Both proximal and distal airways of younger monkeys were more responsive than those of older monkeys. Airway heterogeneity in young monkeys was greatest with regard to degree of airway closure of respiratory bronchioles. We conclude that responsiveness to methacholine varies with airway wall structure and location.  相似文献   
8.
9.
Acute exposure to ozone causes changes inbreathing pattern and lung function which may be caused in part bystimulation of rapidly adapting receptors (RARs). The consequences ofrepeated daily ozone exposure on RAR responsiveness are unknown,although ozone-induced changes in pulmonary function diminish withrepeated exposure. Accordingly, we investigated whether repeated daily ozone exposure diminishes the general responsiveness of RARs. Guineapigs (n = 30) were exposed to 0.5 parts/million ozone or filtered air (8 h/day for 7 days). The animalswere then anesthetized, and RAR impulse activity, dynamic compliance(Cdyn), and lung resistance were recorded at baseline and in responseto four stimuli: substance P, methacholine, hyperinflation, and removalof positive end-expiratory pressure. Repeated daily ozone exposureexaggerated RAR responses to substance P, methacholine, andhyperinflation without causing physiologically relevant effects onbaseline or substance P- and methacholine-induced changes in Cdyn andlung resistance. Because agonist-evoked changes in RAR activitypreceded Cdyn changes, the data suggest that repeated daily ozoneexposure enhances RAR responsiveness via a mechanism other than changes in Cdyn.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号