首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   398篇
  免费   26篇
  424篇
  2016年   4篇
  2015年   6篇
  2014年   7篇
  2013年   4篇
  2012年   9篇
  2011年   15篇
  2010年   10篇
  2009年   6篇
  2008年   13篇
  2007年   13篇
  2006年   15篇
  2005年   19篇
  2004年   13篇
  2003年   13篇
  2002年   16篇
  2001年   13篇
  2000年   8篇
  1999年   8篇
  1998年   5篇
  1992年   10篇
  1989年   7篇
  1988年   5篇
  1987年   11篇
  1986年   7篇
  1985年   5篇
  1983年   4篇
  1982年   4篇
  1969年   5篇
  1967年   6篇
  1965年   3篇
  1964年   3篇
  1963年   3篇
  1962年   3篇
  1961年   3篇
  1959年   4篇
  1958年   5篇
  1953年   4篇
  1950年   3篇
  1943年   3篇
  1942年   6篇
  1941年   6篇
  1940年   8篇
  1939年   6篇
  1938年   9篇
  1937年   5篇
  1936年   5篇
  1935年   7篇
  1934年   9篇
  1932年   3篇
  1930年   3篇
排序方式: 共有424条查询结果,搜索用时 0 毫秒
1.
To determine the molecular basis for changes in aromatase (P450arom) activity in rat ovarian follicles and corpora lutea, seven clones for rat P450arom cDNA have been identified and isolated from a rat granulosa cell λgtll cDNA expression library using a 62 mer deoxyoligonucleotide probe (derived from an amino acid sequence of purified human placental aromatase) and a human placental P450arom cDNA probe. One of the rat P450arom cDNA clones contained an insert 1.2 kb in size. Both the human 1.8 kb cDNA and the rat 1.2 kb cDNA probes hybridized to a single species of P450arom mRNA that was 2.6 kb in size. Northern blot analysis revealed that corpora lutea isolated on day 15 of pregnancy contained high amounts of P450arom mRNA, whereas granulosa cells of antral follicles of hormonally primed, hypophysectomized rats (i.e., those from which mRNA was isolated to construct the cDNA library) contained only low amounts of P450arom mRNA. The lower amounts of P450arom in granulosa cells of preovulatory follicles in the estradiol-follicle-stimulating hormone primed hypophysectomized rats were unexpected because follicles incubated in medium containing testosterone substrate produce more estradiol than do corpora lutea isolated on day 15 of pregnancy and incubated under similar conditions. Additional studies will determine the hormonal events responsible for the elevated amounts and constitutive maintenance of P450arom mRNA and aromatase activity in luteal cells in vivo and in vitro.  相似文献   
2.
The dorsal lateral geniculate bodies (dLGB) in Alticola stoliczkanus barakshin, the Gobi-Altai-Mountain vole, and in Alticola argentatus semicanus, the silver grey mountain vole, and investigated using the nissl- and the golgi method. The geniculo-cortico-relay neurons (GCR neurons) of both species have 5 primary dendrites (D1), a dendritic field of about 100 micron, about 17 free dendritic distal parts (FDE), 10 branching points (VZP) and a average of the perikaryon of 10 micron. All tufted neurons are small and topographically distinctly localised. The dLGB's volume of Alticola stoczkanus, barakshin is 0.16 mm3, the dLGB's volume of Alticola argentatus semicanus is 0.23 mm3.  相似文献   
3.
Incubation of [1-13C]-5-phosphoribosyl pyrophosphate ([1-13C]PRPP) and glutamine with PRPP amidotransferase results in rapid production and disappearance of two new resonances at 89.3 and 85.9 ppm. These resonances coincide with two of the products produced upon incubation of [1-13C]ribose 5-phosphate with NH3. Extensive NMR studies (15N and 1H-13C chemical shift correlation spectra) have allowed assignment of these resonances to beta- and alpha-phosphoribosylamine. These studies represent the first spectral observations of this chemically reactive intermediate. The rate of interconversion of alpha- to beta-phosphoribosylamine as a function of pH has been determined by saturation and inversion-transfer NMR methods. The rate of formation of 5-phosphoribosylamine (PRA) from ribose 5-phosphate and NH3 and its rate of decomposition as a function of pH have been determined with a glycinamide ribonucleotide synthetase trapping system fashioned after earlier studies of Nierlich and Magasanik [Nierlich, D. P., & Magasanik, B. (1965) J. Biol. Chem. 240, 366]. Phosphoribosylamine has a t1/2 = 38 s at 37 degrees C and pH 7.5. The pH-independent equilibrium constant for ribose 5-phosphate and NH3 with phosphoribosylamine has been established, 2.5 M-1, by use of these rate constants as well as by NMR methods. This equilibrium constant and the rates of nonenzymatic interconversion of alpha- and beta-PRA provide essential background for studying the mechanism of glycinamide ribonucleotide synthetase and investigating the possibility of channeling phosphoribosylamine between this enzyme and the first enzyme in the purine pathway.  相似文献   
4.
G W Ashley  G Harris  J A Stubbe 《Biochemistry》1988,27(20):7841-7845
The ribonucleoside triphosphate reductase of Lactobacillus leichmannii converts the substrate analogue 2'-chloro-2'-deoxyuridine 5'-triphosphate (ClUTP) into a mixture of 2'-deoxyuridine triphosphate (dUTP) and the unstable product 3'-keto-2'-deoxyuridine triphosphate (3'-keto-dUTP). This ketone can be trapped by reduction with NaBH4, producing a 4:1 mixture of xylo-dUTP and dUTP. When [3'-3H]ClUTP is treated with enzyme in the presence of NaBH4, the isomeric deoxyuridines isolated after alkaline phosphatase treatment retained 15% of the 3H in ClUTP. Degradation of these isomeric nucleosides has established the location of the 3H in 3'-keto-dUTP as predominantly 2'(S). The xylo-dU had 98.6% of its label at the 2'(S) position and 1.5% at 2'(R). The isolated dU had 89.6% of its label at 2'(S) and 1.4% at 2'(R), with the remaining 9% label inferred to be at the 3'-carbon, this resulting from the direct enzymic production of dUTP. These results are consistent with enzymic production of a 1:1000 mixture of dUTP and 3'-keto-dUTP, where the 3'-hydrogen of ClUTP is retained at 3' during production of dUTP and is transferred to 2'(S) during production of 3'-keto-dUTP. The implications of these results and the unique role of the cofactor adenosylcobalamin (Ashley et al., 1986) are discussed in terms of reductase being a model for the B12-dependent rearrangement reactions.  相似文献   
5.
G W Ashley  G Harris  J Stubbe 《Biochemistry》1988,27(12):4305-4310
The ribonucleoside triphosphate reductase (RTPR) of Lactobacillus leichmannii is inactivated by the substrate analogue 2'-chloro-2'-deoxyuridine 5'-triphosphate (ClUTP). Inactivation is due to alkylation by 2-methylene-3(2H)-furanone, a decomposition product of the enzymic product 3'-keto-2'-deoxyuridine triphosphate. The former has been unambiguously identified as 2-[(ethylthio)methyl]-3(2H)-furanone, an ethanethiol trapped adduct, which is identical by 1H NMR spectroscopy with material synthesized chemically. Subsequent to rapid inactivation, a slow process occurs that results in formation of a new protein-associated chromophore absorbing maximally near 320 nm. The terminal stages of the inactivation have now been investigated in detail. The alkylation and inactivation stoichiometries were studied as a function of the ratio of ClUTP to enzyme. At high enzyme concentrations (0.1 mM), 1 equiv of [5'-3H]ClUTP resulted in 0.9 equiv of 3H bound to protein and 83% inactivation. The amount of labeling of RTPR increased with increasing ClUTP concentration up to the maximum of approximately 4 labels/RTPR, yet the degree of inactivation did not increase proportionally. This suggests that (1) RTPR may be inactivated by alkylation of a single site and (2) decomposition of 3'-keto-dUTP is not necessarily enzyme catalyzed. The formation of the new protein chromophore was also monitored during inactivation and found to reach its full extent upon the first alkylation. Thus, out of four alkylation sites, only one appears capable of undergoing the subsequent reaction to form the new chromophore. While chromophore formation was prevented by NaBH4 treatment, the chromophore itself is resistant to reduction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
6.
J C Wu  J Stubbe  J W Kozarich 《Biochemistry》1985,24(26):7569-7573
Incubation of poly(dA-[3'-3H]dU), poly(dA-[5'-3H]dU), or poly(dA-[5'-3H]dT) under a variety of conditions with activated bleomycin resulted in the production of free nucleic acid base, base propenal, and a small amount of 3H2O. Adjustment of the terminated reaction mixture to pH 10 and incubation at 95 degrees C resulted in a time-dependent increase in 3H2O to an amount equal to the amount of free base. If the terminated reaction mixture was incubated with NaBH4 prior to the heat and alkaline treatment, the release of 3H2O was significantly inhibited. These results are consistent with the generation by activated bleomycin of a 4'-ketone yielding free base, with the exchange of the 3'- and 5'-hydrogens by enolization and with the alkaline-induced strand scission occurring from this intermediate.  相似文献   
7.
Attempts to isolate deoxyuridine 2'-hydroxylase from Rhodotorula glutinis by the procedure of Warn-Cramer et al. (Warn-Cramer, B. J., Macrander, L. A., and Abbott, M. T. (1983) J. Biol. Chem. 258, 10551-10557) have led to the identification and partial purification of a newly recognized alpha-ketoglutarate-requiring oxygenase. This activity, designated deoxyuridine (uridine) 1'-hydroxylase, in the presence of iron and ascorbate, catalyzes the conversion of deoxyuridine (uridine), O2, and alpha-ketoglutarate to uracil, deoxyribonolactone (ribonolactone), CO2, and succinate. Incubation of [1'-3H]uridine with this activity results in time-dependent formation of uracil concomitant with production of CO2 and 3H2O. No Vmax/Km isotope effect is observed on this reaction. Uracil production is accompanied by stoichiometric production of ribonolactone identified by NMR spectroscopy. Also reported in this paper is the partial purification and characterization of the alpha-ketoglutarate-requiring enzyme, deoxyuridine 2'-hydroxylase. Incubation of [2'-alpha-3H]deoxyuridine with this activity results in concomitant production of uridine and 3H2O. Incubation with [2'-beta-3H] deoxyuridine results in the production of uridine whose specific activity is identical to that of the starting material. This enzyme catalyzes the conversion of deoxyuridine to uridine with retention of configuration. No isotope effect is observed on this transformation.  相似文献   
8.
Incubation of the pyrimidine [3'-3H]UDP with ribonucleotide reductase resulted in an isotope effect on the conversion to dUDP which varied as a function of pH and allosteric effectors (pH, kH/kT, effector): 6.6, 4.7, ATP; 7.6, 3.3, ATP; 7.6, 2.6, dATP; 7.6, 2.0, TTP; 8.4, 2.8, ATP. During this reaction 3H2O was also released. The lower the pH of the reaction, the larger the isotope effect, and the smaller the amount of 3H2O produced. At 50% conversion of UDP to dUDP and at pH 7.6, approximately 0.5% of total 3H present in solution was volatilized, while at pH 8.4, approximately 0.9% was volatilized. Similar experiments in which the purine [3'-3H]ADP was incubated with ribonucleotide reductase also resulted in an isotope effect on its conversion to dATP which varied as a function of pH (pH, kH/kT with dGTP as an effector); 6.6, 1.9; 7.6, 1.7; 8.6, 1.4. Furthermore, 3H2O was also released as a function of the extent of the reaction. At 50% turnover and pH 7.6, approximately 0.6% of 3H2O was volatilized, while at pH 8.6 approximately 1.25% was released. Two control experiments in which either the B1 subunit of ribonucleotide reductase was inactivated with 2'-chloro-2'-deoxyuridine 5'-diphosphate or the B2 subunit of ribonucleotide reductase was inactivated with 2'-azido-2'-deoxyuridine 5'-diphosphate and then the enzyme incubated with [3'-3H]ADP or [3'-3H]UDP indicated that in neither case was 3H released. Both B1 and B2 subunits are required for cleavage of the 3'-C--H bond. Incubation of [3'-3H]dADP or [3'-3H]dUDP with ribonucleotide reductase produced no measurable release of 3H. These data clearly indicate that conversion of a purine or pyrimidine diphosphate to a deoxynucleotide diphosphate by Escherichia coli ribonucleotide reductase requires cleavage of the 3'-C--H bond of the substrate. The fate of the 3'-H of the substrate was also determined. Incubation of [3'-2H]UDP with ribonucleotide reductase resulted in the production of [3'-2H]dUDP.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号