首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   2篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2012年   3篇
  2008年   3篇
  2007年   1篇
  2003年   1篇
排序方式: 共有11条查询结果,搜索用时 0 毫秒
1.
Two subunits of eukaryotic RNA polymerase II, Rpb7 and Rpb4, form a subcomplex that has counterparts in RNA polymerases I and III. Although a medium resolution structure has been solved for the 12-subunit RNA polymerase II, the relative contributions of the contact regions between the subcomplex and the core polymerase and the consequences of disrupting them have not been studied in detail. We have identified mutations in the N-terminal ribonucleoprotein-like domain of Saccharomyces cerevisiae Rpb7 that affect its role in certain stress responses, such as growth at high temperature and sporulation. These mutations increase the dependence of Rpb7 on Rpb4 for interaction with the rest of the polymerase. Complementation analysis and RNA polymerase pulldown assays reveal that the Rpb4.Rbp7 subcomplex associates with the rest of the core RNA polymerase II through two crucial interaction points: one at the N-terminal ribonucleoprotein-like domain of Rpb7 and the other at the partially ordered N-terminal region of Rpb4. These findings are in agreement with the crystal structure of the 12-subunit polymerase. We show here that the weak interaction predicted for the N-terminal region of Rpb4 with Rpb2 in the crystal structure actually plays a significant role in interaction of the subcomplex with the core in vivo. Our mutant analysis also suggests that Rpb7 plays an essential role in the cell through its ability to interact with the rest of the polymerase.  相似文献   
2.
3.
Rpb4, a subunit of RNA Polymerase II plays an important role in various stress responses in budding yeast, Saccharomyces cerevisiae. In response to nitrogen starvation, diploid yeast undergoes a dimorphic transition to filamentous pseudohyphal growth, which is regulated through cAMP-PKA and MAP kinase pathway. In the present study, we show that disruption of Rpb4 leads to enhanced pseudohyphal growth, which is independent of nutritional status. We observed that the rpb4Delta/rpb4Delta cells exhibit pseudohyphae even in the absence of functional MAP kinase and cAMP-PKA pathways. Genome-wide expression profiling showed that in the absence of Rpb4 several genes controlling mother daughter cell separation are down regulated. Our genetic studies also provide evidence for involvement of RNA Pol II subunit Rpb4 in the expression of genes downstream of the RAM pathway. Finally, we show that this effect on expression of RAM pathway may at least be partially responsible for the pseudohyphal phenotype of rpb4Delta/rpb4Delta cells.  相似文献   
4.
5.
6.
7.
8.
9.
10.
Regulatory elements located within an ~28-kb region 3' of the Igh gene cluster (3' regulatory region) are required for class switch recombination and for high levels of IgH expression in plasma cells. We previously defined novel DNase I hypersensitive sites (hs) 5, 6, 7 immediately downstream of this region. The hs 5-7 region (hs5-7) contains a high density of binding sites for CCCTC-binding factor (CTCF), a zinc finger protein associated with mammalian insulator activity, and is an anchor for interactions with CTCF sites flanking the D(H) region. To test the function of hs5-7, we generated mice with an 8-kb deletion encompassing all three hs elements. B cells from hs5-7 knockout (KO) (hs5-7KO) mice showed a modest increase in expression of the nearest downstream gene. In addition, Igh alleles in hs5-7KO mice were in a less contracted configuration compared with wild-type Igh alleles and showed a 2-fold increase in the usage of proximal V(H)7183 gene families. Hs5-7KO mice were essentially indistinguishable from wild-type mice in B cell development, allelic regulation, class switch recombination, and chromosomal looping. We conclude that hs5-7, a high-density CTCF-binding region at the 3' end of the Igh locus, impacts usage of V(H) regions as far as 500 kb away.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号