首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   16篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2016年   4篇
  2015年   5篇
  2014年   5篇
  2013年   4篇
  2012年   6篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   11篇
  2007年   8篇
  2006年   9篇
  2005年   6篇
  2004年   10篇
  2003年   6篇
  2002年   11篇
  2001年   6篇
  2000年   7篇
  1999年   7篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1992年   9篇
  1991年   8篇
  1990年   12篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   6篇
  1985年   5篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
排序方式: 共有197条查询结果,搜索用时 31 毫秒
1.
Several techniques were used to investigate the possibility that smooth muscle tropomyosin interacts with smooth muscle myosin. These experiments were carried out in the absence of actin. The Mg2+-ATPase activity of myosin was activated by tropomyosin. This was most marked at low ionic strength but also occurred at higher ionic strength with monomeric myosin. For myosin and HMM, the activation of Mg2+-ATPase by tropomyosin was greater at low levels of phosphorylation. There was no detectable effect of tropomyosin on the Mg2+-ATPase activity of S1. The KCl dependence of myosin viscosity was influenced by tropomyosin, and in the presence of tropomyosin, the 6S to 10S transition occurred at lower KCl concentrations. From the viscosity change, an approximate stoichiometry of 1:1 tropomyosin to myosin was estimated. The phosphorylation dependence of viscosity, which reflects the 10S-6S transition, also was altered in the presence of tropomyosin. An interaction between myosin and tropomyosin was detected by fluorescence measurements using tropomyosin labeled with dansyl chloride. These results indicate that an interaction occurs between myosin and tropomyosin. In general, the interaction is favored at low ionic strength and at low levels of phosphorylation. This interaction is not expected to be competitive with the formation of the actin-tropomyosin complex, but the possibility is raised that a direct interaction between myosin and tropomyosin bound to the thin filament could modify contractile properties in smooth muscle.  相似文献   
2.
In an attempt to elucidate the Ca2+-regulated mechanism of motility in Physarum plasmodia, we improved the preparation method for myosin B and pure myosin. The obtained results are as follows: 1. We obtained two types of myosin B which are distinguishable from each other with respect to their sensitivity to Ca2+. The inactive type of myosin B had low superprecipitation activities both in the presence and in the absence of Ca2+. The active type showed very high superprecipitation activity in EGTA, and the activity was conspicuously inhibited by Ca2+. The active type was converted into the inactive type by treatment with potato acid phosphatase. Also the inactive type or the phosphatase-treated active type was converted into the active type upon reacting with ATP-gamma-S. 2. In the reaction with ATP-gamma-S, only the myosin HC of myosin B was phosphorylated. The phosphorylation was independent of Ca2+ and calmodulin, and the extent was about 1 mol/mol HC. 3. The Ca2+ sensitivity in the superprecipitation of the active type was not decreased by adding an excess amount of F-actin. Besides, the actin-activated Mg2+-ATPase activity of purified phosphorylated myosin was not Ca2+-sensitive. Therefore, presence of a Ca2+-dependent inhibitory factor(s) that could bind to myosin was suggested. 4. The Mg2+-ATPase activity of purified phosphorylated myosin was 7-8 times enhanced by F-actin, but that of dephosphorylated myosin was hardly activated at all. 5. In a gel filtration in 0.5 M KCl, phosphorylated myosin was eluted behind dephosphorylated myosin. Electron microscopy applying the rotary-shadow method showed significant difference in flexibility in the tail between phosphorylated and dephosphorylated myosin molecules. 6. In 40 mM KCl and 5-10 mM MgCl2, phosphorylated myosin formed thick filaments, but dephosphorylated myosin did not, whether there was ATP or not. The above results clearly show that the phosphorylation of myosin HC is indispensable to ATP-induced superprecipitation, the actin-activated Mg2+-ATPase activity, and the formation of thick filaments of myosin. A myosin-linked factor(s) that inhibits an actin-myosin interaction in a Ca2+-dependent manner may exist.  相似文献   
3.
Proteolysis by trypsin of gizzard myosin light chain kinase (MLC kinase) in the absence of Ca2+-calmodulin produced a 64,000-dalton inactive fragment which was converted to a 61,000-dalton Ca2+-calmodulin-independent active fragment. This confirmed previous results (Ikebe, M., Stepinska, M., Kemp, B. E., Means, A. R., and Hartshorne, D. J. (1987) J. Biol. Chem. 262, 13828-13834). On the other hand, proteolysis of MLC kinase in the presence of Ca2+-calmodulin initially produced a 66,000-dalton Ca2+-calmodulin-dependent active fragment which was converted to a 61,000-dalton Ca2+-calmodulin-independent active fragment with further proteolysis. The amino acid sequences from the N terminus of the 66,000-dalton, 64,000-dalton, and 61,000-dalton fragments were determined. The sequence was not found in the reported partial amino acid sequence of MLC kinase (C-terminal 60% of whole sequence) (Guerriero, V., Jr., Russo, M. A., Olson, N. J., Putkey, J. A., and Means, A. R. (1986) Biochemistry 25, 8372-8381), and, therefore, the cleavage sites are in the remaining 40% N-terminal portion of the sequence of MLC kinase. The C terminus of these MLC kinase fragments was determined by employing the carboxypeptidases A, B, and Y digestion followed by the amino acid analysis of the released amino acids. As a result, it was concluded that the C terminus of the 66,000-dalton, 64,000-dalton, and 61,000-dalton MLC kinase fragments are arginine 522, lysine 490 and arginine 494, and lysine 473, respectively. These results show that the inhibitory domain is in the amino acid sequence of 474-490, and that the amino acid sequence 494-522 confers the calmodulin-dependent kinase activity.  相似文献   
4.
A series of inositol 1,4,5-trisphosphate (IP3) analogs and positional isomers was examined to explore the structure-activity relationships among IP3 5-phosphatase, IP3 3-kinase, and the release of Ca2+. All analogs with additional groups on the 2nd position of IP3 inhibited the hydrolysis of [5-32P]IP3 catalyzed by erythrocyte ghosts, with a lower Ki value than seen with IP3. IP3 dehydroxylated at the 2nd position also had a lower Ki, while 2,4,5-IP3 or cyclic(1:2), 4,5-IP3 had higher Ki values. Among these compounds 2-deoxy-IP3 was as potent as IP3 in inhibiting the phosphorylation by [3H] IP3-3-kinase in rat brain cytosol. The other compounds, except for 2,4,5-IP3 inhibited the phosphorylation, however, 2-30 times higher concentrations were required. By lowering free Ca2+, the concentrations required for half-maximal inhibition were low, while those of IP3, 2-deoxy-IP3, and positional isomers remained unchanged. These compounds acted as full agonists in releasing Ca2+ from permeabilized macrophages, although 1.6-50-fold higher concentrations than IP3 were required. These compounds also inhibited the binding of [3H]IP3 to rat cerebellum and bovine adrenal cortex microsomes, but the potencies were 2.9-33 times less than that of IP3. Thus, the 2nd position of IP3 can be modified with only a slight loss of biological activity.  相似文献   
5.
Actin, myosin, and "native" tropomyosin (NTM) were separately isolated from chicken gizzard muscle and rabbit skeletal muscle. With various combinations of the isolated contractile proteins, Mg-ATPase activity and superprecipitation activity were measured. It was thus found that gizzard myosin and gizzard NTM behaved differently from skeletal myosin and skeletal NTM, whereas gizzard actin functioned in the same wasy as skeletal actin. It was also found that gizzard myosin preparations were often Ca-sensitive, that is, that the two activities of gizzard myosin plus actin without NTM were activated by low concentrations of Ca2+. The Mg-ATPase activity of a Ca-insensitive preparation of gizzard myosin was not activated by actin even in the presence of Ca2+. When Ca-sensitive gizzard myosin was incubated with ATP (and Mg2+) in the presence of Ca2+, a light-chain component of gizzard myosin was phosphorylated. The light-chain phosphorylation also occurred when Ca-insensitive myosin was incubated with gizzard NTM and ATP (plus Mg2+) in the presence of Ca2+. In either case, the light-chain phosphorylation required Ca2+. Phosphorylated gizzard myosin in combination with actin was able to exhibit superprecipitation, and Mg-ATPase of the phosphorylated gizzard myosin was activated by actin; the actin activation and superprecipitation were found to occur even in the absence of Ca2+ and NTM or tropomyosin. The phosphorylated light-chain component was found to be dephosphorylated by a partially purified preparation of gizzard myosin light-chain phosphatase. Gizzard myosin thus dephosphorylated behaved exactly like untreated Ca-insensitive gizzard myosin; in combination with actin, it did not superprecipitate either in the presence of Ca2+ or in its absence, but did superprecipitated in the presence of NTM and Ca2+. Ca-activated hydrolysis of ATP catalyzed by gizzard myosin B proceeded at a reduced rate after removal of Ca2+ (by adding EGTA), whereas that catalyzed by a combination of actin, gizzard myosin, and gizzard NTM proceeded at the same rate even after removal of Ca2+. However, addition of a partially purified preparation of gizzard myosin light-chain phosphatase was found to make the recombined system behave like myosin B. Based on these findings, it appears that myosin light-chain kinase and myosin light-chain phosphatase can function as regulatory proteins for contraction and relaxation, respectively, of gizzard muscle.  相似文献   
6.
Limited proteolysis of gizzard myosin by alpha-chymotrypsin converted the heavy chain doublet pattern, seen by gel electrophoresis, to a single band. Light chain degradation was not observed and only minor cleavage occurred at other heavy chain sites. Using a polyclonal antibody raised against a unique sequence from the slower-migrating heavy chain (SM1) it was shown that this conversion was due to the loss of a peptide approximately 4000 daltons from the C terminus of SM1. The peptide was isolated and sequenced, and the cleavage site was identified between phenylalanine 1943 and alanine 1944. Addition of antibody before protease protected SM1 from cleavage. The following changes were observed (a) the Mg2(+)-dependence of actin-activated ATPase of digested phosphorylated myosin was altered and activity was relatively high at low Mg2+ levels, i.e. similar to phosphorylated heavy meromyosin; (b) the KCl dependence of Mg2(+)-ATPase of the digested myosin, particularly the phosphorylated form, showed an altered pattern consistent with the stabilization of the 6 S conformation; (c) the tendency for aggregation was increased by proteolysis of phosphorylated myosin. These results show that the C-terminal region of a gizzard myosin heavy chain can modify some of the properties of myosin. It is suggested that the observed modifications reflect an enhanced tendency of the digested myosin to aggregate.  相似文献   
7.
J Morita  R Takashi  M Ikebe 《Biochemistry》1991,30(39):9539-9545
The 20,000-dalton light chain of smooth muscle myosin was exchanged with exogenous light chain in a solution containing 0.5 M NaCl and 10 mM EDTA at 40 degrees C. The light chain was almost completely exchanged within 30 min under the above conditions. The exchange was markedly inhibited either below 37 degrees C or in the presence of Mg2+ concentrations higher than 10 microM. The 20,000-dalton light chain was selectively labeled of a single thiol (Cys-108) with 5-[[2-[(iodoacetyl)amino]ethyl]amino-naphthalene-1-sulfonic acid (1,5-IAEDANS). The labeled light chain was exchanged stoichiometrically into myosin and was used as a probe to investigate the conformation of smooth muscle myosin. The resulting myosin hybrids showed enzymatic properties virtually identical with those of the control, untreated myosin; i.e., actin-activated ATPase activity was dependent on the 20,000-dalton light-chain phosphorylation catalyzed by myosin light chain kinase, and the 10S-6S conformational transition of myosin correlating with the changes in ATPase was also affected either by the light-chain phosphorylation or by the change in the ionic strength. Steady-state fluorescence antisotropy measurements were performed by varying the temperature. The Perrin-Weber plots were constructed in order to obtain information about the average rotational mobility of the probe and to estimate the rotational correlation time for the AEDANS-myosin head. The fluorescence probe on the 20,000-dalton light chain was found to be quite immobile as indicated by its limiting anisotropy (A0 = 0.33).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
8.
Smooth muscle myosin light chain kinase (MLC kinase) was phosphorylated by smooth muscle calmodulin-dependent protein kinase II (CaM protein kinase II). When MLC kinase was free from calmodulin, two sites were phosphorylated. The phosphorylation at the one site was much faster than the other site; however, the phosphorylation at the first site was completely blocked by calmodulin binding to MLC kinase. Phosphorylation of MLC kinase by CaM protein kinase II increased the dissociation constant of MLC kinase for calmodulin about 10 times without changing the Vmax. The location of the phosphorylation sites was identified by isolating and sequencing the tryptic phosphopeptides of MLC kinase. The preferred site was identified as serine 512 and the second site as serine 525. These sites are the same as the sites phosphorylated by cAMP-dependent protein kinase.  相似文献   
9.
In order to clarify the mechanism(s) by which cyclic GMP inhibits the generation of inositol phosphates in rat aorta segments and cultured bovine aortic smooth muscle cells, we studied phosphoinositide hydrolysis and GTPase activity in homogenates and membrane preparations of cultured bovine aortic smooth muscle cells. Pretreatment of homogenate preparations with cyclic GMP plus ATP did not inhibit [8-arginine, 3H] vasopressin (AVP) binding, but resulted in a total suppression of the AVP-induced GTPase activation. The pretreatment with cyclic GMP and ATP also inhibited the formation of inositol phosphates induced by AVP in the presence of low concentrations of guanosine 5'-(gamma-thio)triphosphate (GTP gamma S), or by high concentrations of GTP gamma S alone. However, the formation of inositol phosphates by high concentrations of Ca2+ alone was not blocked. These results suggest that the ability of cyclic GMP to inhibit phosphoinositide hydrolysis results from an inhibition of a guanine nucleotide regulatory protein activation, and the interaction between guanine nucleotide regulatory protein and phospholipase C. While the precise site of this inhibition is not presently known, the inhibition by cyclic GMP is dependent upon the addition of ATP and probably entails a phosphorylation event since adenylylimidodiphosphate can not substitute for the ATP requirement.  相似文献   
10.
Molecular dynamics (MD) simulations using all-atom and explicit solvent models provide valuable information on the detailed behavior of protein–partner substrate binding at the atomic level. As the power of computational resources increase, MD simulations are being used more widely and easily. However, it is still difficult to investigate the thermodynamic properties of protein–partner substrate binding and protein folding with conventional MD simulations. Enhanced sampling methods have been developed to sample conformations that reflect equilibrium conditions in a more efficient manner than conventional MD simulations, thereby allowing the construction of accurate free-energy landscapes. In this review, we discuss these enhanced sampling methods using a series of case-by-case examples. In particular, we review enhanced sampling methods conforming to trivial trajectory parallelization, virtual-system coupled multicanonical MD, and adaptive lambda square dynamics. These methods have been recently developed based on the existing method of multicanonical MD simulation. Their applications are reviewed with an emphasis on describing their practical implementation. In our concluding remarks we explore extensions of the enhanced sampling methods that may allow for even more efficient sampling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号