首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   3篇
  国内免费   9篇
  80篇
  2024年   1篇
  2023年   4篇
  2022年   6篇
  2021年   1篇
  2020年   7篇
  2019年   6篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2014年   3篇
  2013年   5篇
  2012年   5篇
  2011年   8篇
  2010年   5篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   3篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
1.
Eukaryotic cells have evolved molecular mechanisms to ensure the faithful inheritance of organelles by daughter cells in order to maintain the benefits afforded by the compartmentalization of biochemical functions. Little is known about the inheritance of peroxisomes, organelles of lipid metabolism. We have analyzed peroxisome dynamics and inheritance in the dimorphic yeast Yarrowia lipolytica. Most peroxisomes are anchored at the periphery of cells of Y. lipolytica. In vivo video microscopy showed that at cell division, approximately half of the anchored peroxisomes in the mother cell are dislodged individually from their static positions and transported to the bud. Peroxisome motility is dependent on the actin cytoskeleton. YlInp1p is a peripheral peroxisomal membrane protein that affects the partitioning of peroxisomes between mother cell and bud in Y. lipolytica. In cells lacking YlInp1p, most peroxisomes were transferred to the bud, with only a few remaining in the mother cell, while in cells overexpressing YlInp1p, peroxisomes were preferentially retained in the mother cell, resulting in buds nearly devoid of peroxisomes. Our results are consistent with a role for YlInp1p in anchoring peroxisomes in cells. YlInp1p has a role in the dimorphic transition in Y. lipolytica, as cells lacking the YlINP1 gene more readily convert from the yeast to the mycelial form in oleic acid-containing medium, the metabolism of which requires peroxisomal activity, than does the wild-type strain. This study reports the first analysis of organelle inheritance in a true dimorphic yeast and identifies the first protein required for peroxisome inheritance in Y. lipolytica.  相似文献   
2.
为阐明铁皮石斛和重唇石斛及其杂交后代14L-3、14L-6、14L-7和14L-9花挥发性成分的变化,采用静态顶空气相色谱-质谱(GC-MS)联用技术对石斛花进行检测。结果表明,从石斛花中检测出81种挥发性成分,包括烯、酮、醛、烷几大类,铁皮石斛、重唇石斛、14L-3、14L-6、14L-7和14L-9分别有23、12、21、33、23和35种。铁皮石斛花的主成分是α-蒎烯,重唇石斛花是2-十五烷酮,4个子代花中均含有这2种来自亲本的特征成分,α-蒎烯是子代共同的主成分。亲本和子代石斛花共有成分是正己醛。子代14L-3、14L-6、14L-9均与母本铁皮石斛相似性高,相似性以14L-3>14L-6>14L-9,与父本差异性大。14L-7与亲本相似度最均衡。这为石斛育种研究提供了指导。  相似文献   
3.
This study aimed to investigate the anti-tumor activity of RY10-4, a small molecular that was designed and synthesized based on the structure of protoapigenone. A previous screening study showed that RY10-4 possessed anti-proliferative effects against HepG2 human hepatocellular carcinoma cells. However, the full range of RY10-4 anti-cancer effects on liver tumors and the underlying mechanisms have not been identified. Herein, employing flow cytometry, and Western blot analysis, we demonstrate that RY10-4 can induce cell cycle arrest, intracellular reactive oxygen species (ROS) production and apoptosis in HepG2 cells. In HepG2 cell xenograft tumor model, RY10-4 significantly inhibited the growth of tumors and induced apoptosis in tumor cells, with little side effects. Moreover, RY10-4 caused the suppression of STAT3 activation, which may be involved the apoptosis induction. In addition, RY10-4 inhibited the proliferation of Hep3B and HuH-7 human hepatocellular carcinoma cells in a concentration-dependent manner. Taken together, our results suggest that RY10-4 has a great potential to develop as chemotherapeutic agent for liver cancer.  相似文献   
4.
The genus Dioscorea is widely distributed in tropical and subtropical regions, and is economically important in terms of food supply and pharmaceutical applications. However, DNA barcodes are relatively unsuccessful in discriminating between Dioscorea species, with the highest discrimination rate (23.26%) derived from matK sequences. In this study, we compared genic and intergenic regions of three Dioscorea chloroplast genomes and found that the density of SNPs and indels in intergenic sites was about twice and seven times higher than that of SNPs and indels in the genic regions, respectively. A total of 52 primer pairs covering highly variable regions were designed and seven pairs of primers had 80%–100% PCR success rate. PCR amplicons of 73 Dioscorea individuals and assembled sequences of 47 Dioscorea SRAs were used for estimating intraspecific and interspecific divergence for the seven loci: The rpoB‐trnC locus had the highest interspecific divergence. Automatic barcoding gap discovery (ABGD), Poisson tree processes (PTP), and generalized mixed Yule coalescence (GMYC) analysis were applied for species delimitation based on the seven loci and successfully identified the majority of species, except for species in the Enantiophyllum section. Phylogenetic analysis of 51 Dioscorea individuals (28 species) showed that most individuals belonging to the same species tended to cluster in the same group. Our results suggest that the variable loci derived from comparative analysis of plastid genome sequences could be good DNA barcode candidates for taxonomic analysis and species delimitation.  相似文献   
5.
Efficient and modular genome editing technologies that manipulate the genome of bacterial pathogens will facilitate the study of pathogenesis mechanisms. However, such methods are yet to be established for Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of rice bacterial blight. We identified a single type I-C CRISPR-Cas system in the Xoo genome and leveraged this endogenous defence system for high-efficiency genome editing in Xoo. Specifically, we developed plasmid components carrying a mini-CRISPR array, donor DNA, and a phage-derived recombination system to enable the efficient and programmable genome editing of precise deletions, insertions, base substitutions, and gene replacements. Furthermore, the type I-C CRISPR-Cas system of Xoo cleaves target DNA unidirectionally, and this can be harnessed to generate large genomic deletions up to 212 kb efficiently. Therefore, the genome-editing strategy we have developed can serve as an excellent tool for functional genomics of Xoo, and should also be applicable to other CRISPR-harbouring bacterial plant pathogens.  相似文献   
6.
7.
Host cellular receptors play key roles in the determination of virus tropism and pathogenesis.However,little is known about SARS-CoV-2 host receptors with the e...  相似文献   
8.
陆地棉枯萎病抗性基因的等位性测定及连锁分析   总被引:5,自引:0,他引:5  
1995-1996年,对我国育成的有代表性的5个抗病品种进行抗枯萎病基因的等位性测定。结果表明:在所选用的5个抗病品种中至少存在两个不同的抗病基因(暂定名为Fwl和Fw2)。连锁分析显示:Fwl与T586的8个标志性状间、Fw2与T582、T586的13个标志性状间无连锁关系。 Abstract:Allelism in vestigation of genes resistante to Fusarium wilt in cotton suggested that there were 2 genes(assigned symbols Fw1 and Fw2)in 5 cultivars used.No linkage was found between Fw1 and the marker genes in T586 and between Fw2 and those marker genes in T582 and T586.  相似文献   
9.
Wei  Long  Zhao  Haiyan  Wang  Baoxiang  Wu  Xinyi  Lan  Rujia  Huang  Xu  Chen  Bo  Chen  Gang  Jiang  Chaoqiang  Wang  Jinlan  Liu  Yan  Zheng  Qingsong 《Journal of Plant Growth Regulation》2022,41(6):2108-2121

This study evaluated the effects of foliar spraying melatonin (MT) on the growth of salt-stressed rice. Seedlings were treated with 50 and 100 mM of NaCl and different concentrations of MT (25, 50, 100, 200, 300, and 400 μM) for 14 days. Different concentrations of MT could promote plant growth significantly under salt stress, particularly at concentrations of 200, 300, and 400 μM. A concentration of 200 μM MT was considered as optimal and used in a subsequent experiment on biomass, water content, antioxidation, mineral nutrition, salt absorption, and distribution of salt-stressed rice seedlings. Results showed that MT’s promoting effect on plant growth under salt stress was evident with time, particularly under high salt stress. MT improved the activities of antioxidant enzymes, reduced membrane lipid peroxidation, alleviated cell injury in plant leaves, and increased N content and Si accumulation in the leaves and roots under salt stress, particularly under high salinity. This compound also inhibited Na uptake and upward transport, but it promoted or maintained the uptake and upward transport of K and Ca in salt-stressed rice. Thus, MT improved the ion homeostasis of K/Na and Ca/Na in plants, particularly in the leaves. Foliar spraying of MT alleviated salt stress on rice by promoting nutrient accumulation or translocation, improving ion homeostasis, which is evident in the leaves, and consequently enhancing its salt resistance. The antioxidative improvement caused by MT might also be related to the improved ion homeostasis.

  相似文献   
10.
Yu J  Chau KF  Vodyanik MA  Jiang J  Jiang Y 《PloS one》2011,6(3):e17557
Genetic reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) could offer replenishable cell sources for transplantation therapies. To fulfill their promises, human iPSCs will ideally be free of exogenous DNA (footprint-free), and be derived and cultured in chemically defined media free of feeder cells. Currently, methods are available to enable efficient derivation of footprint-free human iPSCs. However, each of these methods has its limitations. We have previously derived footprint-free human iPSCs by employing episomal vectors for transgene delivery, but the process was inefficient and required feeder cells. Here, we have greatly improved the episomal reprogramming efficiency using a cocktail containing MEK inhibitor PD0325901, GSK3β inhibitor CHIR99021, TGF-β/Activin/Nodal receptor inhibitor A-83-01, ROCK inhibitor HA-100 and human leukemia inhibitory factor. Moreover, we have successfully established a feeder-free reprogramming condition using chemically defined medium with bFGF and N2B27 supplements and chemically defined human ESC medium mTeSR1 for the derivation of footprint-free human iPSCs. These improvements enabled the routine derivation of footprint-free human iPSCs from skin fibroblasts, adipose tissue-derived cells and cord blood cells. This technology will likely be valuable for the production of clinical-grade human iPSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号