首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26789篇
  免费   2525篇
  国内免费   4212篇
  33526篇
  2024年   133篇
  2023年   520篇
  2022年   1172篇
  2021年   1727篇
  2020年   1358篇
  2019年   1499篇
  2018年   1322篇
  2017年   1009篇
  2016年   1374篇
  2015年   1953篇
  2014年   2324篇
  2013年   2355篇
  2012年   2879篇
  2011年   2515篇
  2010年   1509篇
  2009年   1462篇
  2008年   1548篇
  2007年   1282篇
  2006年   1065篇
  2005年   885篇
  2004年   741篇
  2003年   604篇
  2002年   500篇
  2001年   288篇
  2000年   263篇
  1999年   228篇
  1998年   141篇
  1997年   112篇
  1996年   102篇
  1995年   108篇
  1994年   80篇
  1993年   50篇
  1992年   64篇
  1991年   64篇
  1990年   52篇
  1989年   54篇
  1988年   22篇
  1987年   32篇
  1986年   18篇
  1985年   20篇
  1984年   10篇
  1983年   20篇
  1982年   18篇
  1981年   5篇
  1979年   4篇
  1978年   3篇
  1977年   6篇
  1976年   3篇
  1973年   3篇
  1950年   3篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
2.
It is still a difficult clinical issue to decide whether a patient is a suitable candidate for a cochlear implant and to plan postoperative rehabilitation, especially for some special cases, such as auditory neuropathy. A partial solution to these problems is to preoperatively evaluate the functional integrity of the auditory neural pathways. For evaluating the strength of phase-locking of auditory neurons, which was not reflected in previous methods using electrically evoked auditory brainstem response (EABR), a new method for recording phase-locking related auditory responses to electrical stimulation, called the electrically evoked frequency-following response (EFFR), was developed and evaluated using guinea pigs. The main objective was to assess feasibility of the method by testing whether the recorded signals reflected auditory neural responses or artifacts. The results showed the following: 1) the recorded signals were evoked by neuron responses rather than by artifact; 2) responses evoked by periodic signals were significantly higher than those evoked by the white noise; 3) the latency of the responses fell in the expected range; 4) the responses decreased significantly after death of the guinea pigs; and 5) the responses decreased significantly when the animal was replaced by an electrical resistance. All of these results suggest the method was valid. Recording obtained using complex tones with a missing fundamental component and using pure tones with various frequencies were consistent with those obtained using acoustic stimulation in previous studies.  相似文献   
3.
Ischemic stroke is a major composition of cerebrovascular disease, seriously threatening to human health in the world. Activin A (ActA), belonging to transforming growth factor-beta (TGF-β) super family, plays an important role in the hypoxic-ischemic brain injury through ActA/Smads pathway. While as an essential phosphorylation assistor in TGF-β signaling, the functions and mechanisms of smad anchor for receptor activation (SARA) in ischemic brain injury remain poorly understood. To solve this problem and explore the pathological processes of ischemic stroke, we used an Oxygen–Glucose deprivation (OGD) model in nerve growth factor-induced differentiated rattus PC12 pheochromocytoma cells and down regulated the expressions of SARA by RNA interference technology. Our results showed that the repression of SARA before OGD exposure reduced the expressions of Smad2, 3, 4 mRNA and the phosphorylation rate of Smad2 protein, but it did not affect the mRNA expressions of Smad7. After OGD treatment, ActA/Smads pathway was activated and the expression of SARA in the SARA pre-repression group was significantly up-regulated. The pre-repression of SARA increased the sensitivities of nerve-like cells to OGD damage. Moreover, the mRNA expression of Smad7 which was supposed to participate in the negative feedback of ActA/Smads pathway was also elevated due to OGD injury. Taken together, these results suggest a positive role of SARA in assisting the phosphorylation of Smad2 and maintaining the neuron protective effect of ActA/Smads pathway.  相似文献   
4.
Mycoplasmas exhibit a novel, substrate-dependent gliding motility that is driven by ∼400 “leg” proteins. The legs interact with the substrate and transmit the forces generated by an assembly of ATPase motors. The velocity of the cell increases linearly by nearly 10-fold over a narrow temperature range of 10-40°C. This corresponds to an Arrhenius factor that decreases from ∼45 kBT at 10°C to ∼10 kBT at 40°C. On the other hand, load-velocity curves at different temperatures extrapolate to nearly the same stall force, suggesting a temperature-insensitive force-generation mechanism near stall. In this article, we propose a leg-substrate interaction mechanism that explains the intriguing temperature sensitivity of this motility. The large Arrhenius factor at low temperature comes about from the addition of many smaller energy barriers arising from many substrate-binding sites at the distal end of the leg protein. The Arrhenius dependence attenuates at high temperature due to two factors: 1), the reduced effective multiplicity of energy barriers intrinsic to the multiple-site binding mechanism; and 2), the temperature-sensitive weakly facilitated leg release that curtails the power stroke. The model suggests an explanation for the similar steep, sub-Arrhenius temperature-velocity curves observed in many molecular motors, such as kinesin and myosin, wherein the temperature behavior is dominated not by the catalytic biochemistry, but by the motor-substrate interaction.  相似文献   
5.
6.
7.
A study of the component synthesis method (CSM) for analyzing the normal mode dynamics of macromolecules is reported. The procedure involves a reduction of the dimensions of the normal mode problems for large molecular systems and the accurate extraction of the low-frequency modes. A macromolecule is divided into small components based on a hierarchical clustering of the residues in the structure. Interactions between coupled components are treated by the method of static correlation. The normal modes of the components are obtained first, and a fraction of the low-frequency normal modes of the components under mutual correlations are then used as a reduced basis for solving for the normal modes of the whole molecule. Multiple components are introduced for large macromolecules so that the dimensions of the eigenvalue problems at the component level are small. The method is applied to the protein crambin. In test calculations in which the dimensions of the eigenvalue equations are reduced to 1/6 of their natural size, the errors in the normal mode frequencies calculated by the CSM procedure are only about 1–2% when compared with the exact values. The rms fluctuations of all atoms in crambin calculated by the CSM procedure are basically identical to the exact results. The CSM procedure is shown to be accurate for calculating the normal modes of large macromolecules with a significant reduction of the size of the problem. © 1994 John Wiley & Sons, Inc.  相似文献   
8.
9.
We have recently isolated human and rat cDNAs (designated FER and flk, respectively) which encode nonreceptor protein-tyrosine kinases which are very similar to one another and related in sequence and domain structure to the c-fps/fes gene product. We show that FER and flk are human and rat counterparts of an evolutionarily conserved gene, hereafter termed FER regardless of species. The human and rat FER genes encode a widely expressed 94-kilodalton protein-tyrosine kinase which is antigenically related to the fps/fes protein-tyrosine kinase. The structural and antigenic similarities between the FER and fps/fes proteins suggest that they are members of a new family of nonreceptor protein-tyrosine kinases.  相似文献   
10.
The trk proto-oncogene encodes a receptor for nerve growth factor.   总被引:127,自引:0,他引:127  
R Klein  S Q Jing  V Nanduri  E O'Rourke  M Barbacid 《Cell》1991,65(1):189-197
Two classes of receptors with distinct affinities for nerve growth factor (NGF) have been identified. The low affinity receptor (Kd approximately 10(-9) to 10(-8) M) is a cysteine-rich glycoprotein encoded by the previously characterized LNGFR gene. The structural nature of the high affinity receptor (Kd approximately 10(-11) to 10(-10) M) has yet to be established. In this study we show that the product of the human trk proto-oncogene (gp140trk) binds NGF with high affinity. Moreover, NGF could be chemically cross-linked to the endogenous gp140trk present in rat PC12 pheochromocytoma cells as well as to gp140trk ectopically expressed in mouse fibroblasts and in insect Sf9 cells. High affinity binding of NGF to gp140trk can occur in the absence of low affinity LNGFR receptors, at least in nonneural cells. Addition of NGF to PC12 cells elicits rapid phosphorylation of gp140trk on tyrosine residues and stimulates its tyrosine kinase activity. These results indicate that gp140trk is a functional NGF receptor that mediates at least some of the signal transduction processes initiated by this neurotrophic factor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号