首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  27篇
  2022年   1篇
  2021年   2篇
  2014年   1篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   3篇
  2003年   1篇
  1998年   1篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1978年   1篇
  1976年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
Dopamine (DA) and DA agonists have been shown to exert a protective role against the formation of duodenal ulcers. The effect of stimulation of DA receptors on the development of stress-induced gastric ulcers is currently unknown. Accordingly, we evaluated the effect of several DA agonists on the development of gastric ulcers induced by 3 h of cold + restraint stress (CRS) in rats. Apomorphine, d-amphetamine, methylphenidate, and threo-dl-p-hydroxymethylphenidate (an hydroxylated analog of methylphenidate), significantly reduced both the incidence and severity of CRS-induced gastric ulcers. The gastric cytoprotection afforded by these agents was dose-related, and completely antagonized by pretreatment with the peripheally acting DA antagonist domperidone. Because domperidone blocks peripheral, but not central, DA receptors, and since the entry of threo-dl-p-hydroxymethylphenidate across the blood-brain barrier into the brain is restricted to a great extent, we conclude that stimulation of peripheral DA receptors is primarily involved in the gastric cytoprotection induced by dopamimetics.The pathogenesis of stress-induced gastric ulcers remains largely unknown, and significant efforts have been made over the last decade to functionally characterize some of the factors involved in the etiology of this disease. Considerable attention has been focused on gastric acid secretion, but its primary role in stress-induced gastric ulcer disease remains uncertain. In fact, agents which effectively inhibit or neutralize gastric acid secretion such as cimetidine or antacids do not necessarily exert protection against stress-induced gastric ulcers (1,2). Moreover, in our original studies with neurotensin, a brain and gastrointestinal peptide, we have found that central administration of this neuropeptide, which completely prevents the development of cold + restraint stress (CRS)-induced gastric ulcers, does not appreciably alter gastric acid secretion (2). These findings support the contention that gastric acid secretion may not be an important factor in the development of this type of gastric ulcer.There is, however, considerable evidence that the automatic nervous system plays an intermediary role in the development of these ulcers (3,4). In this regard, surgical or pharmacological blockade of the vagal (cholinergic) division of the autonomic nervous system prevents the appearance of stress-associated gastric ulcers (5,6). Direct stimulation of catecholamine receptors, or indirect activation via increased sympathetic outflow to the periphery (7,4,8–11) appears to produce a salutary effect of stress-induced gastric ulcers.Szabo and his associates (12, 13, 14) have extensively studied the anti ulcer effects of dopamine (DA) in duodenal ulcer formation. Whether DA also modifies the development of stress-induced gastric ulcers is currently unknown.We have therefore evaluated the effect of selected DA receptor agonists and antagonists on CRS-induced gastric ulcer formation in rats.  相似文献   
2.
Neurotensin (NT) administered intracisternally (i.c.) to adult mice produced a marked hypothermia while prostaglandin E2, administered by the same route, produced hyperthermia. When administered concurrently the effects of the two substances were neutralized. The prostaglandin synthesis inhibitors, indomethacin and acetylsalicylic acid, were injected subcutaneously 30 min prior to i.c. administered NT and/or thyrotropin-releasing hormone (TRH). Both inhibitors failed to potentiate the hypothermia induced by NT or alter its antagonism by TRH in mice kept at 26°C. When mice were kept at 6°C, pretreatment with indomethacin, but not acetylsalicylic acid, potentiated NT-induced hypothermia and prevented its antagonism by TRH. Because indomethacin inhibits synthesis of prostaglandins within the central nervous system (CNS) as well as in peripheral organs while acetylsalicylic acid acts only in the periphery, it appears that NT-induced hypothermia in a cold environment is enhanced by a reduction of prostaglandins in the CNS.  相似文献   
3.
Neural activity in the nucleus accumbens (NAc) is thought to track fundamentally value-centric quantities linked to reward and effort. However, the NAc also contributes to flexible behavior in ways that are difficult to explain based on value signals alone, raising the question of if and how nonvalue signals are encoded in NAc. We recorded NAc neural ensembles while head-fixed mice performed an odor-based biconditional discrimination task where an initial discrete cue modulated the behavioral significance of a subsequently presented reward-predictive cue. We extracted single-unit and population-level correlates related to the cues and found value-independent coding for the initial, context-setting cue. This context signal occupied a population-level coding space orthogonal to outcome-related representations and was predictive of subsequent behaviorally relevant responses to the reward-predictive cues. Together, these findings support a gating model for how the NAc contributes to behavioral flexibility and provide a novel population-level perspective from which to view NAc computations.

Neural activity in the nucleus accumbens is thought to track value-centric quantities such as current or future expected reward, reward prediction errors, etc. This study shows that neural ensembles in nucleus accumbens encode a context signal that modulates subsequent stimulus-outcome associations, supporting a circuit-level gating model for behavioral flexibility.  相似文献   
4.
Although past studies have demonstrated decreased renal matrix metalloproteinase (MMP) activity in type 1 diabetes and in mesangial cells grown under high glucose conditions, renal MMP expression and activity in type 2 diabetes and the regulation of MMPs by profibrotic factors involved in diabetic renal complications such as endothelin-1 (ET-1) remained unknown. The renal expression and activity of MMPs in type 2 diabetic Goto-Kakizaki (GK) rats treated with vehicle or ET(A) receptor selective antagonist ABT-627 for 4 wk were assessed by gelatin zymography, fluorogenic gelatinase assay, and immunoblotting. In addition, expression and phosphorylation of epidermal growth factor receptor (EGFR) and connective tissue growth factor were evaluated by immunoblotting. Renal sections stained with Masson trichrome were used to investigate kidney structure. MMP-2 activity and protein levels were significantly increased in both cortical and medullary regions in the GK rats. Membrane-bound MMP (MT1-MMP), MMP-9, and fibronectin levels were also increased, and ABT-627 treatment did not have an effect on MMP activity and expression. Histological analysis of kidneys did not reveal any structural changes. Phosphorylation of EGFR was significantly increased in the diabetic animals, and ABT-627 treatment prevented this increase, suggesting ET-1-mediated transactivation of EGFR. These results suggest that there is early upregulation of renal MMPs in the absence of any kidney damage. Although the ET(A) receptor subtype is not involved in the early activation of MMPs in type 2 diabetes, ET-1 contributes to transactivation of growth-promoting and profibrotic EGFR.  相似文献   
5.
Rising energy consumption in coming decades, combined with a changing energy mix, have the potential to increase the impact of energy sector water use on freshwater biodiversity. We forecast changes in future water use based on various energy scenarios and examine implications for freshwater ecosystems. Annual water withdrawn/manipulated would increase by 18–24%, going from 1,993,000–2,628,000 Mm3 in 2010 to 2,359,000–3,271,000 Mm3 in 2035 under the Reference Case of the Energy Information Administration (EIA). Water consumption would more rapidly increase by 26% due to increased biofuel production, going from 16,700–46,400 Mm3 consumption in 2010 to 21,000–58,400 Mm3 consumption in 2035. Regionally, water use in the Southwest and Southeast may increase, with anticipated decreases in water use in some areas of the Midwest and Northeast. Policies that promote energy efficiency or conservation in the electric sector would reduce water withdrawn/manipulated by 27–36 m3GJ−1 (0.1–0.5 m3GJ−1 consumption), while such policies in the liquid fuel sector would reduce withdrawal/manipulation by 0.4–0.7 m3GJ−1 (0.2–0.3 m3GJ−1 consumption). The greatest energy sector withdrawal/manipulation are for hydropower and thermoelectric cooling, although potential new EPA rules that would require recirculating cooling for thermoelectric plants would reduce withdrawal/manipulation by 441,000 Mm3 (20,300 Mm3 consumption). The greatest consumptive energy sector use is evaporation from hydroelectric reservoirs, followed by irrigation water for biofuel feedstocks and water used for electricity generation from coal. Historical water use by the energy sector is related to patterns of fish species endangerment, where water resource regions with a greater fraction of available surface water withdrawn by hydropower or consumed by the energy sector correlated with higher probabilities of imperilment. Since future increases in energy-sector surface water use will occur in areas of high fish endemism (e.g., Southeast), additional management and policy actions will be needed to minimize further species imperilment.  相似文献   
6.
7.
High levels of the S100 calcium binding protein S100A4 also called fibroblast specific protein 1 (FSP1) have been established as an inducer of metastasis and indicator of poor prognosis in breast cancer. The mechanism by which S100A4 leads to increased cancer aggressiveness has yet to be established; moreover, the function of this protein in normal mammary gland biology has not been investigated. To address the role of S100A4 in normal mammary gland, its spatial and temporal expression patterns and possible function in branching morphogenesis were investigated. We show that the protein is expressed mainly in cells of the stromal compartment of adult humans, and during active ductal development, in pregnancy and in involution of mouse mammary gland. In 3D culture models, topical addition of S100A4 induced a significant increase in the TGFα mediated branching phenotype and a concomitant increase in expression of a previously identified branching morphogen, metalloproteinase-3 (MMP-3). These events were found to be dependent on MEK activation. Downregulation of S100A4 using shRNA significantly reduced TGFα induced branching and altered E-cadherin localization. These findings provide evidence that S100A4 is developmentally regulated and that it plays a functional role in mammary gland development, in concert with TGFα by activating MMP-3, and increasing invasion into the fat pad during branching. We suggest that S100A4-mediated effects during branching morphogenesis provide a plausible mechanism for how it may function in breast cancer progression.  相似文献   
8.
9.
10.
Vascular dysfunction characterized by a hyperreactivity to vasoconstrictors and/or impaired vascular relaxation contributes to increased incidence of cardiovascular disease in diabetes. Endothelin (ET)-1, a potent vasoconstrictor, is chronically elevated in diabetes. However, the role of ET-1 in resistance versus larger vessel function in mild diabetes remains unknown. Accordingly, this study investigated vascular function of third-order mesenteric arteries and basilar arteries in control Wistar and Goto-Kakizaki (GK) rats, a model of mild Type 2 diabetes. Six weeks after the onset of diabetes, contractile responses to 0.1-100 nM ET-1 and relaxation responses to 1 nM-10 microM acetylcholine (ACh) in vessels preconstricted (baseline + 60%) with serotonin (5-HT) were assessed by myograph studies in the presence or absence of a nitric oxide synthase (NOS) inhibitor, N-nitro-L-arginine (L-NNA). Maximum contractile response to ET-1 was augmented in mesenteric vessels (155 +/- 18% in GK vs. 81 +/- 6% in control; n = 5-7) but not in the basilar artery (134 +/- 29% in GK vs. 107 +/- 17% in control; n = 4 per group). However, vascular relaxation was impaired in the basilar arteries (22 +/- 4% in GK vs. 53 +/- 7% in control; n = 4 per group) but not in mesenteric arteries of GK rats. Inhibition of NOS decreased the relaxation response of basilar arteries to 15 +/- 8% and 42 +/- 5% in GK and control rats, respectively; whereas, in resistance vessels, corresponding values were 56 +/- 7% and 89 +/- 3% (vs. 109 +/- 2% and 112 +/- 3% without NOS blockade), indicating the involvement of different vasorelaxation-promoting pathways in these vascular beds. These findings provide evidence that the ET system is activated even under mild hyperglycemia and that it contributes to the hyperreactivity of resistance vessels, therefore, the ET system may play an important role in elevated blood pressure in Type 2 diabetes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号