Bipolaris setariae is known to cause brown stripe disease in sugarcane, resulting in significant yield losses. Silicon (Si) has the potential to enhance plant growth and biotic resistance. In this study, the impact of Si on brown stripe disease was investigated across susceptible and resistant sugarcane varieties, utilizing four Si concentrations (0, 15, 30, and 45 g per barrel of Na2SiO3·5H2O). Si significantly reduced the incidence of brown stripe disease (7.41–59.23%) and alleviated damage to sugarcane growth parameters, photosynthetic parameters, and photosynthetic pigments. Submicroscopic observations revealed that Si induced the accumulation of silicified cells in leaves, reduced spore accumulation, decreased stomatal size, and protected organelles from B. setariae damage. In addition, Si increased the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase), reduced reactive oxygen species production (malondialdehyde and hydrogen peroxide) and modulated the expression of genes associated with hormone signalling (PR1, TGA, AOS, AOC, LOX, PYL8, and SnRK2), leading to the accumulation of abscisic acid and jasmonic acid and inhibiting SA synthesis. Si also activated the activity of metabolism-related enzymes (polyphenol oxidase and phenylalanine ammonia lyase) and the gene expression of PAL-dependent genes (PAL, C4H, and 4CL), regulating the accumulation of metabolites, such as chlorogenic acid and lignin. The antifungal test showed that chlorogenic acid (15ug μL−1) had a significant inhibitory effect on the growth of B. setariae. This study is the first to demonstrate the inhibitory effect of Si on B. setariae in sugarcane, highlighting Si as a promising and environmentally friendly strategy for managing brown stripe disease. 相似文献
Coral Reefs - Coral health depends on a fragile partnership between the coral hosts and the endosymbiotic dinoflagellate symbionts. Sequence-level omics techniques are revolutionizing many aspects... 相似文献
Nutrient resorption from the senesced to the green leaves can help a plant re-use elements, thus improving adaptability and persistence. How the resorption of nitrogen (N), phosphorus (P) and potassium (K) varies among differently aged lucerne (Medicago sativa) stands and how they correlate to their stoichiometry in the leaves and soil remain uncertain. This study aimed to analyze the resorption efficiencies (REs) of N, P and K and their possible correlations with stoichiometric ratios in the plant and soil.
Methods
The concentrations of plant N, P and K and soil N, P, K and carbon (C) were measured under lucerne stands established in different years, and stoichiometric ratios and REs were calculated. The relationships of REs with stoichiometric ratios were analyzed.
Results
The nitrogen resorption efficiency (NRE) was quite variable among the different stands and tended to rise and then drop with stand age, ranging from 4.6 to 33.7 % with an average of 16.2 %. The phosphorus resorption efficiency (PRE) tended to increase with stand age, ranging from 11.1 to 38.3 % with an average of 27.3 %. The potassium resorption efficiency (KRE) increased with stand age, ranging from 21.0 to 49.8 % with an average of 36.9 %. The KRE was generally highest, followed by the PRE, and the NRE was lowest. Leaf N:P and N:K generally decreased and then increased with stand age, while the K:P increased and then decreased. In the green leaves, total N concentration increased significantly with NRE and PRE, and total P concentration rose significantly with PRE, while in the senesced leaves, total N concentration decreased significantly with NRE and KRE. The N:P in the green leaves decreased significantly with PRE and the K:P in the senesced leaves dropped with NRE. Furthermore, the REs decreased with total soil nutrition status if there was any correlation. The REs increased significantly with soil ammonium N concentration, while the NRE decreased significantly with soil nitrate N concentration. In addition, soil available P concentration at most depths led to significant increases in NRE and KRE. However, the REs were rarely influenced by stoichiometric ratios of soil N, P, K and C.
Conclusions
The NRE rose and then dropped, and the PRE and KRE both increased with stand age. Leaf N:P and N:K generally decreased and then increased with stand age, while K:P increased and then decreased. The concentrations of N, P and K increased in the green leaves and decreased in the senesced leaves with REs if there was any correlation. The REs decreased with total soil nutrition status if there was any correlation. However, the REs hardly changed with stoichiometric ratios in the leaves and soil under differently aged lucerne stands. There appear to be no correlations between REs and element stoichiometries. 相似文献
β-Mannanase (EC 3.2.1.78) is a key enzyme to hydrolyze the β-mannosidic linkages in mannan and heteromannan. The expression of a wild type β-mannanase (manWT) of Aspergillus sulphureus in Pichia pastoris is not high enough for its application in feed supplement. To earn a high expression level, the manWT gene was firstly optimized
to manM according to the code bias of P. pastoris, which was then inserted into pPICzαA and transformed into P. pastoris strain X-33. In the induction by methanol, β-mannanase was expressed in high level with 32% increase in comparison with the manWT gene expressed in P. pastoris in shaken flask. In a 10-L fermenter, the manM was expressed in 9-fold higher level than that in shaken flask, which yielded
the enzyme activity of 1100 U/mL. This is the first study on codon bias effect on the β-mannanase gene expression level, which helps to achieve high β-mannanase yield and enzymatic activity in P. pastoris. 相似文献
Scar formation and wound non-healing often occur during wound repair after skin injury, which are still unresolved. Clinic indicated that the structure played an important role in the wound repair. Our previous research showed that the wound over-healed (scar formation) when the integrity and continuity of dermal tissues was destroyed by injury. Other evidences showed that wound healing was impaired in diabetes because the underlying alternation in their skin tissues occurred caused by advanced glycation end products (AGES) aggregation. In order to explore the changes of the structure of skin at nanoscale, the small angle X-ray scattering (SAXS), compared with transmission electron microscopy (TEM), was applied to observe the skin in different pathological status. The results showed that there were some regular patterns in the structure of dermal tissue. The patterns were changed by different pathological status, which would result in wound healing disorder. These will be beneficial for clarifying the pathological mechanisms of wound healing.