首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4408篇
  免费   454篇
  国内免费   235篇
  5097篇
  2025年   6篇
  2024年   55篇
  2023年   79篇
  2022年   142篇
  2021年   251篇
  2020年   166篇
  2019年   192篇
  2018年   185篇
  2017年   119篇
  2016年   187篇
  2015年   229篇
  2014年   314篇
  2013年   323篇
  2012年   383篇
  2011年   335篇
  2010年   238篇
  2009年   194篇
  2008年   212篇
  2007年   196篇
  2006年   180篇
  2005年   172篇
  2004年   154篇
  2003年   154篇
  2002年   119篇
  2001年   97篇
  2000年   76篇
  1999年   80篇
  1998年   50篇
  1997年   34篇
  1996年   29篇
  1995年   32篇
  1994年   28篇
  1993年   24篇
  1992年   6篇
  1991年   11篇
  1990年   9篇
  1989年   5篇
  1988年   4篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1979年   1篇
  1976年   1篇
  1965年   1篇
  1955年   1篇
  1951年   2篇
排序方式: 共有5097条查询结果,搜索用时 15 毫秒
1.
Highly efficient Agrobacterium-mediated transformation of trifoliate orange (Poncirus trifoliata (L.) Raf.) was achieved via indirect shoot organogenesis. Stable transformants were obtained from epicotyl segments infected with Agrobacterium strain EHA 105 harboring the binary vector pBI121, which contained the neomycin phosphotransferase gene (NPTII) as a selectable marker and the β-glucuronidase (GUS) gene as a reporter. The effects of regeneration and selection conditions on the transformation efficiency of P. trifoliata (L.) Raf. have been investigated. A 7-d cocultivation on a medium with 8.86 μM 6-benzylaminopurine (BA)+1.43 μM indole-3-acetic acid (IAA) was used to improve callus formation from epicotyl segments after transformation. A two-step selection strategy was developed to select kanamycin-resistant calluses and to improve rooting of transgenic shoots. Transgenic shoots were multiplied on shoot induction medium with 1.11 μM BA + 5.71 μM IAA. Using the optimized transformation procedure, transformation efficiency and rooting frequency reached 417% and 96%, respectively. Furthermore, the number of regenerated escape shoots was dramatically reduced. Stable integration of the transgenes into the genome of transgenic citrus plants was confirmed by GUS histochemical assay, PCR, and Southern blot analysis.  相似文献   
2.
We studied the inhibitory effect of gastrodin on tyrosinase using inhibition kinetics and computational simulation. Gastrodin reversibly inhibited tyrosinase in a mixed-type manner with Ki = 123.8 ± 20.2 mM. Time-interval kinetics revealed the inhibition to be a first-order process with mono- and bi-phasic components. Using AutoDock Vina, we calculated a binding energy of ?6.3 kcal/mol for gastrodin and tyrosinase, and we performed a molecular dynamics simulation of the tyrosinase–gastrodin interaction. The simulation results suggested that gastrodin interacts primarily with histidine residues in the active site. A 10-ns molecular dynamics simulation showed that one copper ion in the tyrosinase active site was responsible for the interaction with gastrodin. Our study provides insight into the inhibition of tyrosinase by the hydroxyl groups of gastrodin. A combination of inhibition kinetics and computational calculations may help to confirm the inhibitory action of gastrodin on tyrosinase and define the mechanisms of inhibition.  相似文献   
3.
Yu  Xianglong  Liu  Jianxin  Li  Huizi  Liu  Boyang  Zhao  Bingqian  Ning  Zhangyong 《Biochemical genetics》2021,59(3):799-812

Atypical porcine pestivirus (APPV) is an emerging novel pestivirus causing the congenital tremor (CT) in piglets. The worldwide distribution characteristic of APPV make it a threat to global swine health. E2 is the major envelope glycoprotein of APPV and the crucial target for vaccine development. Considering the genetic variability of APPV complete genomes and its E2 gene as well as gaps for codon analysis, a comprehensive analysis of codon usage patterns was performed. Relative synonymous codon usage (RSCU) and effective number of codon (ENC) analyses showed that a relatively instable change existed and a slight low codon usage bias (CUB) were displayed in APPV genomes. ENC-plot analysis and correlation analyses of nucleotide compositions and ENC showed that mutation pressure and natural selection both affected the codon usage bias of the APPV and natural selection had a more obvious influence for E2 gene compared with complete genomes. Principal component analysis (PCA) and correlation analyses confirmed the above results. Correlation analyses between Gravy and Aromaticity values and the codon bias showed that natural selection played an important role in shaping the synonymous codon bias. Furthermore, neutrality plot analysis showed that natural selection was the main force while mutation pressure was a minor force influencing the codon usage pattern of the APPV E2 gene and complete genomes. The results could illustrate the codon usage patterns of APPV genomes and provided valuable basic data for further fundamental research of evolution of APPV.

  相似文献   
4.
In glutamate fermentations by Corynebacterium glutamicum, higher glutamate concentration could be achieved by constantly controlling dissolved oxygen concentration (DO) at a lower level; however, by-product lactate also severely accumulated. The results of analyzing activities changes of the two key enzymes, glutamate and lactate dehydrogenases involved with the fermentation, and the entire metabolic network flux analysis showed that the lactate overproduction was because the metabolic flux in TCA cycle was too low to balance the glucose glycolysis rate. As a result, the respiratory quotient (RQ) adaptive control based “balanced metabolic control” (BMC) strategy was proposed and used to regulate the TCA metabolic flux rate at an appropriate level to achieve the metabolic balance among glycolysis, glutamate synthesis, and TCA metabolic flux. Compared with the best results of various DO constant controls, the BMC strategy increased the maximal glutamate concentration by about 15% and almost completely repressed the lactate accumulation with competitively high glutamate productivity.  相似文献   
5.
We have investigated the role of poly(ADP-ribose) polymerase (PARP) activation in rat brain in a model of sublethal transient global ischemia. Adult male rats were subjected to 15 min of ischemia with brain temperature reduced to 34 degrees C, followed by 1, 2, 4, 8, 16, 24, and 72 h of reperfusion. PARP mRNA expression was examined in the hippocampus using quantitative RT-PCR, northern blot analysis, and in situ hybridization. Protein expression was assessed using western blot analysis. PARP enzymatic activity was investigated by measuring nuclear [3H]NAD incorporation. The presence of poly(ADP-ribose) polymers was assessed immunocytochemically. Although PARP mRNA and protein expressions were not altered after ischemia, enzymatic activity was increased 4.37-fold at 1 h (p < 0.05 vs. sham) and 1.73-fold (p < 0.05 vs. sham) at 24 h of reperfusion. Immunostaining demonstrated the presence of poly(ADP-ribose) polymers in CA1 neurons. Cellular NAD+ levels were not significantly altered at any time point. Furthermore, systemic administration of 3-aminobenzamide (30 mg/kg), a PARP inhibitor, prevented the increase in PARP activity at 1 and 24 h of reperfusion, significantly decreased the number of surviving neurons in the hippocampal CA1 region 72 h after ischemia (p < 0.01 vs. sham), and increased DNA single-strand breaks assessed as DNA polymerase I-mediated biotin-dATP nick-translation (PANT)-positive cells (p < 0.01 vs. sham). Furthermore, using an in vitro DNA repair assay, 3-aminobenzamide (30 mg/kg) was shown to block DNA base excision repair activity. These data suggest that the activation of PARP, without subsequent NAD+ depletion, following mild transient ischemia may be neuroprotective in the brain.  相似文献   
6.
7.
    
The intrinsic optimum temperature for the development of ectotherms is one of the most important factors not only for their physiological processes but also for ecological and evolutional processes. The Sharpe–Schoolfield–Ikemoto (SSI) model succeeded in defining the temperature that can thermodynamically meet the condition that at a particular temperature the probability of an active enzyme reaching its maximum activity is realized. Previously, an algorithm was developed by Ikemoto (Tropical malaria does not mean hot environments. Journal of Medical Entomology, 45, 963–969) to estimate model parameters, but that program was computationally very time consuming. Now, investigators can use the SSI model more easily because a full automatic computer program was designed by Shi et al. (A modified program for estimating the parameters of the SSI model. Environmental Entomology, 40, 462–469). However, the statistical significance of the point estimate of the intrinsic optimum temperature for each ectotherm has not yet been determined. Here, we provided a new method for calculating the confidence interval of the estimated intrinsic optimum temperature by modifying the approximate bootstrap confidence intervals method. For this purpose, it was necessary to develop a new program for a faster estimation of the parameters in the SSI model, which we have also done.  相似文献   
8.
9.
Previous evidence from post-mortem Alzheimer disease (AD) brains and drug (especially rapamycin)-oriented in vitro and in vivo models implicated an aberrant accumulation of the mammalian target of rapamycin (mTor) in tangle-bearing neurons in AD brains and its role in the formation of abnormally hyperphosphorylated tau. Compelling evidence indicated that the sequential molecular events such as the synthesis and phosphorylation of tau can be regulated through p70 S6 kinase, the well characterized immediate downstream target of mTor. In the present study, we further identified that the active form of mTor per se accumulates in tangle-bearing neurons, particularly those at early stages in AD brains. By using mass spectrometry and Western blotting, we identified three phosphoepitopes of tau directly phosphorylated by mTor. We have developed a variety of stable cell lines with genetic modification of mTor activity using SH-SY5Y neuroblastoma cells as background. In these cellular systems, we not only confirmed the tau phosphorylation sites found in vitro but also found that mTor mediates the synthesis and aggregation of tau, resulting in compromised microtubule stability. Changes of mTor activity cause fluctuation of the level of a battery of tau kinases such as protein kinase A, v-Akt murine thymoma viral oncogene homolog-1, glycogen synthase kinase 3β, cyclin-dependent kinase 5, and tau protein phosphatase 2A. These results implicate mTor in promoting an imbalance of tau homeostasis, a condition required for neurons to maintain physiological function.  相似文献   
10.
    
Wilms' tumor, also known as nephroblastoma, is a kind of pediatric renal cancer. Previous studies have indicated that microRNAs (miRNAs) regulate various cancers progression. However, whether miR‐200 family regulated Wilms' tumor progression remains to be elucidated. In our study, miR‐200b/c/429 expression was downregulated in Wilms' tumor tissue samples from 25 patients. And data from three independent analyses of quantitative real‐time polymerase chain reaction revealed that the expression of miR‐200b/c/429 was downregulated in Wilms' tumor cell lines. Functionally, Cell counting kit‐8 assay revealed that cell viability was reduced by overexpressing miR‐200b/c/429. Transwell assay manifested that cell migration and invasion was hindered by miR‐200b/c/429 overexpression. Sphere‐forming and western blot assays demonstrated that miR‐200b/c/429 overexpression suppressed the sphere formation ability. Mechanically, nuclear factor‐κB (NF‐κB) pathway was confirmed to be associated with Wilms' tumor progression; miR‐200b/c/429 overexpression inactivated NF‐κB pathway as miR‐200b/c/429 was identified to target IκB kinase β (IKK‐β), an NF‐κB pathway‐related gene. Moreover, miR‐200b/c/429 was sponged by LINC00667 in Wilms' tumor cells. LINC00667 competitively bound with miR‐200b/c/429 to regulate IKK‐β expression and then activated NF‐κB pathway in Wilms' tumor. Subsequently, rescue assays illustrated that silencing of IKK‐β could reverse the effect of miR‐200b/c/429 inhibition on the progression of sh‐LINC00667‐transfected Wilms' tumor cells. In summary, LINC00667 promoted Wilms' tumor progression by sponging miR‐200b/c/429 family to regulate IKK‐β.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号