首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   10篇
  国内免费   20篇
  2024年   1篇
  2023年   4篇
  2022年   2篇
  2021年   7篇
  2020年   5篇
  2019年   4篇
  2018年   5篇
  2017年   4篇
  2016年   2篇
  2015年   12篇
  2014年   13篇
  2013年   9篇
  2012年   9篇
  2011年   6篇
  2010年   2篇
  2009年   1篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   7篇
  2004年   2篇
  2003年   6篇
  2002年   2篇
  2000年   3篇
  1997年   1篇
  1996年   1篇
  1993年   2篇
  1991年   1篇
排序方式: 共有125条查询结果,搜索用时 500 毫秒
1.
为探究不同品种宁夏枸杞果实活性成分生物合成相关基因的表达水平,筛选关键差异表达基因(differentially expressed genes,DEGs),揭示宁夏枸杞品种间活性成分含量差异的分子机制,本研究采用Illumina NovaSeq 6000高通量测序技术,对宁夏枸杞‘宁杞1号’和‘宁杞7号’青果期、转色期及成熟期果实进行转录组测序,比较2个品种果实不同发育期相关基因表达谱的变化。结果显示:转录组测序共获得811818178条clean reads,有121.76 Gb有效数据。‘宁杞1号’和‘宁杞7号’在青果期、转色期和成熟期差异表达基因分别有2827、2552和2311个;分别有2153、2050和1825个差异基因在基因本体论(gene ontology,GO)、京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)富集分析和同源蛋白簇(clusters of orthologous groups of proteins,KOG)分析等6个数据库中被成功注释。青果期、转色期和成熟期果实的差异表达基因,在GO数据库分别有1307、865和624个被富集到生物学过程、细胞组分及分子功能3个部分中;KEGG通路富集结果均集中在代谢途径、次生代谢物生物合成和植物-病原互作过程;在KOG数据库,3个发育期分别注释了1775、1751和1541个差异表达基因。对注释的基因进行PubMed数据库检索,在青果期、转色期和成熟期分别筛选到与枸杞活性成分合成相关的差异表达基因18、26和24个,这些基因主要参与类胡萝卜素、类黄酮、萜类、生物碱和维生素等代谢途径。选取7个差异表达基因进行RT-qPCR验证,结果与转录组测序数据表达趋势一致。本研究从转录水平为不同品种宁夏枸杞活性成分含量差异提供了初步证据,为进一步挖掘枸杞活性成分生物合成的关键基因及解析其表达调控机制提供了研究基础。  相似文献   
2.
3.
A p21-activated kinase 6 (PAK6) was previously identified to be an androgen receptor (AR) interacting protein through a yeast two-hybrid screening. We used hormone responsive prostate cancer LAPC4 and LNCap cell lines as models to study the signaling events associated with androgen stimulation and PAK6. An androgen-stimulated PAK6 kinase activation was observed in LAPC4 cells expressing endogenous PAK6 and in LNCap cells ectopically expressing a wild type PAK6. This activation was likely mediated through a direct interaction between AR and PAK6 since siRNA knock-down of AR in LAPC4 cells downregulated androgen-stimulated PAK6 activation. In addition, LNCap cells expressing a non-AR-interacting PAK6 mutant exhibited dampened androgen-stimulated kinase activation. As a consequence of androgen-stimulated activation, PAK6 was phosphorylated at multiple serine/threonine residues including the AR-interacting domain of PAK6. Furthermore, androgen-stimulation promoted prostate cancer cell motility and invasion were demonstrated in LNCap cells ectopically expressing PAK6-WT. In contrast, LNCap expressing non-AR-interacting mutant PAK6 did not respond to androgen stimulation with increased cell motility and invasion. Our results demonstrate that androgen-stimulated PAK6 activation is mediated through a direct interaction between AR and PAK6 and PAK6 activation promotes prostate cancer cells motility and invasion.  相似文献   
4.
Li  Yanteng  Lv  Wenying  Cheng  Gang  Wang  Shuwei  Liu  Bangxin  Zhao  Hulin  Wang  Hongwei  Zhang  Leiming  Dong  Chao  Zhang  Jianning 《Neurochemical research》2020,45(11):2723-2731
Neurochemical Research - Blast-induced traumatic brain injury (bTBI) is a leading cause of disability and mortality in soldiers during the conflicts in Iraq and Afghanistan. Although substantial...  相似文献   
5.
Wang J  Xue Y  Feng X  Li X  Wang H  Li W  Zhao C  Cheng X  Ma Y  Zhou P  Yin J  Bhatnagar A  Wang R  Liu S 《Proteomics》2004,4(1):136-150
The genome of Thermoanaerobacter tengcongensis is estimated to encode 2588 theoretical proteins. In this study, we have vitalized approximately 46% of the theoretical proteome experimentally using a proteomic strategy that combines three different methods, shotgun digestion plus high-performance liquid chromatography (HPLC) with ion-trap tandem mass spectrometry (shotgun-liquid chromatography (LC)/MS), one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) plus HPLC with ion-trap tandem mass spectrometry (one-dimensional electrophoresis (1DE)-LC/MS), and two-dimensional gel electrophoresis plus matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (2DE-MALDI-TOF-MS). Of the 1200 proteins identified, as few as 76 proteins were globally found by all three approaches, and notably, most of these proteins were in the soluble fraction. However, there were a number of unique proteins detected by one method only, suggesting that our strategy provides a means toward obtaining a comprehensive view of protein expression profile. Proteins from the major metabolic pathways are strongly represented on the map, and a number of these enzymes were identified by more than one proteomic method. Based upon the proteins identified in the present study, we are able to broaden the understanding of how T. tengcongensis survives under high temperature environment, whereas several of its properties can not be fully explained by genome data.  相似文献   
6.
Wear particle-induced osteolysis is the leading cause of aseptic loosening, which is the most common reason for THA (total hip arthroplasty) failure and revision surgery. Although existing studies suggest that osteoblast apoptosis induced by wear debris is involved in aseptic loosening, the underlying mechanism linking wear particles to osteoblast apoptosis remains almost totally unknown. In the present study, we investigated the effect of autophagy on osteoblast apoptosis induced by CoCrMo metal particles (CoPs) in vitro and in a calvarial resorption animal model. Our study demonstrated that CoPs stimulated autophagy in osteoblasts and PIO (particle-induced osteolysis) animal models. Both autophagy inhibitor 3-MA (3-methyladenine) and siRNA of Atg5 could dramatically reduce CoPs-induced apoptosis in osteoblasts. Further, inhibition of autophagy with 3-MA ameliorated the severity of osteolysis in PIO animal models. Moreover, 3-MA also prevented osteoblast apoptosis in an antiautophagic way when tested in PIO model. Collectively, these results suggest that autophagy plays a key role in CoPs-induced osteolysis and that targeting autophagy-related pathways may represent a potential therapeutic approach for treating particle-induced peri-implant osteolysis.  相似文献   
7.
Serum and glucocorticoid-regulated kinase 2 (sgk2) is 80% identical to the kinase domain of sgk1, an important mediator of mineralocorticoid-regulated sodium (Na(+)) transport in the distal nephron of the kidney. The expression pattern and role in renal function of sgk2 are virtually uncharacterized. In situ hybridization and immunohistochemistry of rodent kidney coupled with real-time RT-PCR of microdissected rat kidney tubules showed robust sgk2 expression in the proximal straight tubule and thick ascending limb of the loop of Henle. Sgk2 expression was minimal in distal tubule cells with aquaporin-2 immunostaining but significant in proximal tubule cells with Na(+)/H(+) exchanger 3 (NHE3) immunostaining. To ascertain whether mineralocorticoids regulate expression of sgk2 in a manner similar to sgk1, we examined sgk2 mRNA expression in the kidneys of adrenalectomized rats treated with physiological doses of aldosterone together with the glucocorticoid receptor antagonist RU486. Northern blot analysis and in situ hybridization showed that, unlike sgk1, sgk2 expression in the kidney was not altered by aldosterone treatment. Based on the observation that sgk2 is expressed in proximal tubule cells that also express NHE3, we asked whether sgk2 regulates NHE3 activity. We heterologously expressed sgk2 in opossum kidney (OKP) cells and measured Na(+)/H(+) exchange activity by Na(+)-dependent cell pH recovery. Constitutively active sgk2, but not sgk1, stimulated Na(+)/H(+) exchange activity by >30%. Moreover, the sgk2-mediated increase in Na(+)/H(+) exchange activity correlated with an increase in cell surface expression of NHE3. Together, these results suggest that the pattern of expression, regulation, and role of sgk2 within the mammalian kidney are distinct from sgk1 and that sgk2 may play a previously unrecognized role in the control of transtubular Na(+) transport through NHE3 in the proximal tubule.  相似文献   
8.
9.
8‐Hydroxyquinoline‐7‐carboxaldehyde (8‐HQ‐7‐CA), Schiff‐base ligand 8‐hydroxyquinoline‐7‐carboxaldehyde benzoylhydrazone, and binuclear complexes [LnL(NO3)(H2O)2]2 were prepared from the ligand and equivalent molar amounts of Ln(NO3)?6 H2O (Ln=La3+, Nd3+, Sm3+, Eu3+, Gd3+, Dy3+, Ho3+, Er3+, Yb3+, resp.). Ligand acts as dibasic tetradentates, binding to LnIII through the phenolate O‐atom, N‐atom of quinolinato unit, and C?N and ? O? C?N? groups of the benzoylhydrazine side chain. Dimerization of this monomeric unit occurs through the phenolate O‐atoms leading to a central four‐membered (LnO)2 ring. Ligand and all of the LnIII complexes can strongly bind to CT‐DNA through intercalation with the binding constants at 105–106 M ?1. Moreover, ligand and all of the LnIII complexes have strong abilities of scavenging effects for hydroxyl (HO.) radicals. Both the antioxidation and DNA‐binding properties of LnIII complexes are much better than that of ligand.  相似文献   
10.
Upon phagocytosis, Legionella pneumophila translocates numerous effector proteins into host cells to perturb cellular metabolism and immunity, ultimately establishing intracellular survival and growth. VipD of L. pneumophila belongs to a family of bacterial effectors that contain the N-terminal lipase domain and the C-terminal domain with an unknown function. We report the crystal structure of VipD and show that its C-terminal domain robustly interferes with endosomal trafficking through tight and selective interactions with Rab5 and Rab22. This domain, which is not significantly similar to any known protein structure, potently interacts with the GTP-bound active form of the two Rabs by recognizing a hydrophobic triad conserved in Rabs. These interactions prevent Rab5 and Rab22 from binding to downstream effectors Rabaptin-5, Rabenosyn-5 and EEA1, consequently blocking endosomal trafficking and subsequent lysosomal degradation of endocytic materials in macrophage cells. Together, this work reveals endosomal trafficking as a target of L. pneumophila and delineates the underlying molecular mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号