首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227篇
  免费   27篇
  国内免费   18篇
  272篇
  2024年   4篇
  2023年   9篇
  2022年   14篇
  2021年   35篇
  2020年   15篇
  2019年   15篇
  2018年   14篇
  2017年   8篇
  2016年   10篇
  2015年   8篇
  2014年   12篇
  2013年   25篇
  2012年   15篇
  2011年   22篇
  2010年   16篇
  2009年   8篇
  2008年   9篇
  2007年   8篇
  2006年   7篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有272条查询结果,搜索用时 15 毫秒
1.
Coxiella burnetii is the etiological agent of the zoonotic disease Q fever, which is featured by its ability to replicate in acid vacuoles resembling the lysosomal network. One key virulence determinant of C. burnetii is the Dot/Icm system that transfers more than 150 effector proteins into host cells. These effectors function to construct the lysosome-like compartment permissive for bacterial replication, but the functions of most of these effectors remain elusive. In this study, we used an affinity tag purification mass spectrometry (AP-MS) approach to generate a C. burnetii-human protein-protein interaction (PPI) map involving 53 C. burnetii effectors and 3480 host proteins. This PPI map revealed that the C. burnetii effector CBU0425 (designated CirB) interacts with most subunits of the 20S core proteasome. We found that ectopically expressed CirB inhibits hydrolytic activity of the proteasome. In addition, overexpression of CirB in C. burnetii caused dramatic inhibition of proteasome activity in host cells, while knocking down CirB expression alleviated such inhibitory effects. Moreover, we showed that a region of CirB that spans residues 91–120 binds to the proteasome subunit PSMB5 (beta 5). Finally, PSMB5 knockdown promotes C. burnetii virulence, highlighting the importance of proteasome activity modulation during the course of C. burnetii infection.  相似文献   
2.
While several studies have established a positive correlation between community diversity and invasion resistance, it is less clear how species interactions within resident communities shape this process. Here, we experimentally tested how antagonistic and facilitative pairwise interactions within resident model microbial communities predict invasion by the plant–pathogenic bacterium Ralstonia solanacearum. We found that facilitative resident community interactions promoted and antagonistic interactions suppressed invasions both in the lab and in the tomato plant rhizosphere. Crucially, pairwise interactions reliably explained observed invasion outcomes also in multispecies communities, and mechanistically, this was linked to direct inhibition of the invader by antagonistic communities (antibiosis), and to a lesser degree by resource competition between members of the resident community and the invader. Together, our findings suggest that the type and strength of pairwise interactions can reliably predict the outcome of invasions in more complex multispecies communities.  相似文献   
3.
Protein modification with lysine 63-linked ubiquitin chains has been implicated in the non-proteolytic regulation of signaling pathways. To understand the molecular mechanisms underlying this process, we have developed an in vitro system to examine the activity of the ubiquitin-conjugating enzyme UBC13-UEV1A with TRAF6 in which TRAF6 serves as both a ubiquitin ligase and substrate for modification. Although TRAF6 potently stimulates the activity of UBC13-UEV1A to synthesize ubiquitin chains, it is not appreciably ubiquitinated. We have determined that the presentation of Lys(63) of ubiquitin by UEV1A suppresses TRAF6 modification. Based on our observations, we propose that the modification of proteins with Lys(63)-linked ubiquitin chains occurs through a UEV1A-independent substrate modification and UEV1A-dependent Lys(63)-linked ubiquitin chain synthesis mechanism.  相似文献   
4.
Recent studies on the inhibition of tumor growth by Se-containing polysaccharide were reviewed. Meanwhile, the possible molecular mechanisms of the inhibition of tumor cell growth through antioxidation, induction of tumor cell apoptosis, blockade of cell cycle, and enhancement of immunity by Se-containing polysaccharide were proposed. In the end, the potential application of Se-containing polysaccharide in the prevention and treatment of tumor was elucidated.  相似文献   
5.
Heteroatom doping is widely recognized as an appealing strategy to break the capacitance limitation of carbonaceous materials toward sodium storage. However, the concrete effects, especially for heteroatomic phase transformation, during the sodium storage reaction remain a confusing topic. Here, a novel hypercrosslinked polymerization approach is demonstrated to fabricate pyrrole/thiophene hypercrosslinked microporous copolymer and further give porous carbonaceous materials with accurately regulated N/S dual doping corresponding to starting feeding ratios. Significantly, the N doping contributes to the conductivity and surface wettability, while the S doping is bridged to build stable active sites, which can be electrochemically converted into mercaptan anions via faraday reaction and further enhancing reversible capacities. Meanwhile, the abundant S doping can also conduce to the expanded interlayer spacing to shorten the ions diffusion distance, thus optimizing the reaction kinetic. As a result, the N0.2S0.8‐micro‐dominant porous carbon delivers the highest reversible capacity of 521 mAh g?1 at 100 mA g?1 and excellent cyclic stability over 2000 cycles at 2000 mA g?1 with a capacity decay of 0.0145 mAh g?1 per cycle. This work is anticipated to provide an in‐depth understanding of capacitance contribution and illuminate the heteroatomic phase transformation during sodium storage reactions for doping carbonaceous anodes.  相似文献   
6.
Carotenoids are isoprenoid compounds synthesized by all photosynthetic and some non-photosynthetic organisms. They are essential for photosynthesis and contribute to many other aspects of a plant's life. The oxidative breakdown of carotenoids gives rise to the formation of a diverse family of essential metabolites called apocarotenoids. This metabolic process either takes place spontaneously through reactive oxygen species or is catalyzed by enzymes generally belonging to the CAROTENOID CLEAVAGE DIOXYGENASE family. Apocarotenoids include the phytohormones abscisic acid and strigolactones (SLs), signaling molecules and growth regulators. Abscisic acid and SLs are vital in regulating plant growth, development and stress response. SLs are also an essential component in plants’ rhizospheric communication with symbionts and parasites. Other apocarotenoid small molecules, such as blumenols, mycorradicins, zaxinone, anchorene, β-cyclocitral, β-cyclogeranic acid, β-ionone and loliolide, are involved in plant growth and development, and/or contribute to different processes, including arbuscular mycorrhiza symbiosis, abiotic stress response, plant–plant and plant–herbivore interactions and plastid retrograde signaling. There are also indications for the presence of structurally unidentified linear cis-carotene-derived apocarotenoids, which are presumed to modulate plastid biogenesis and leaf morphology, among other developmental processes. Here, we provide an overview on the biology of old, recently discovered and supposed plant apocarotenoid signaling molecules, describing their biosynthesis, developmental and physiological functions, and role as a messenger in plant communication.  相似文献   
7.

Background

Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes.

Methodology/Principal Findings

We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes.

Conclusion

The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.  相似文献   
8.
Breast cancer is a popularly diagnosed malignant tumor. Genomic profiling studies suggest that breast cancer is a disease with heterogeneity. Chemotherapy is one of the chief means to treat breast cancer, while its responses and clinical outcomes vary largely due to the conventional clinicopathological factors and inherent chemosensitivity of breast cancer. Using the least absolute shrinkage and selection operator (LASSO) Cox regression model, our study established a multi-mRNA-based signature model and constructed a relative nomogram in predicting distant-recurrence-free survival for patients receiving surgery and following chemotherapy. We constructed a signature of eight mRNAs (IPCEF1, SYNDIG1, TIGIT, SPESP1, C2CD4A, CLCA2, RLN2, and CCL19) with the LASSO model, which was employed to separate subjects into groups with high- and low-risk scores. Obvious differences of distant-recurrence-free survival were found between these two groups. This eight-mRNA-based signature was independently associated with the prognosis and had better prognostic value than classical clinicopathologic factors according to multivariate Cox regression results. Receiver operating characteristic results demonstrated excellent performance in diagnosing 3-year distant-recurrence by the eight-mRNA signature. A nomogram that combined both the eight-mRNA-based signature and clinicopathological risk factors was constructed. Comparing with an ideal model, the nomograms worked well both in the training and validation sets. Through the results that the eight-mRNA signature effectively classified patients into low- and high-risk of distant recurrence, we concluded that this eight-mRNA-based signature played a promising predictive role in prognosis and could be clinically applied in breast cancer patients receiving adjuvant chemotherapy.  相似文献   
9.
10.
Ganglioside GM3 plays a well-documented and important role in the regulation of tumor cell proliferation, invasion, and metastasis by modulating tyrosine kinase growth factor receptors. However, the effect of GM3 on the hepatocyte growth factor receptor (HGFR, cMet) has not been fully delineated. In the current study, we investigated how GM3 affects cMet signaling and HGF-stimulated cell motility and migration using three hepatic cancer cell lines of mouse (Hca/A2, Hca/16A3, and Hepa1-6). Decreasing GM3 expression with the use of P4, a specific inhibitor for ganglioside synthesis inhibited the HGF-stimulated phosphorylation of cMet and activity of PI3K/Akt signaling pathway. In contrast, the increased expression of GM3 as a result of adding exogenous GM3 enhanced the HGF-stimulated phosphorylation of cMet and activity of PI3K/Akt signaling pathway. Furthermore, HGF-stimulated cell motility and migration in vitro were inhibited by reduced expression of GM3 and enhanced by increased expression of GM3. All the observations indicate that ganglioside GM3 promotes HGF-stimulated motility of murine hepatoma cell through enhanced phosphorylation of cMet at specific tyrosine sites and PI3K/Akt-mediated migration signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号