首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
  2007年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Hypertrehalosemic hormone (HTH) is a neuropeptide within the adipokinetic hormone (AKH) family that induces a release of trehalose from fat body into hemolymph in a number of insects. In this study, we first showed that female adult German cockroach, Blattella germanica, displayed a cyclic fluctuation of hemolymph trehalose levels correlated to the maturation of oocytes in the reproductive cycle. After cloning the HTH cDNA from the German cockroach (Blage-HTH), expression studies indicated that Blage-HTH mRNA showed the cyclic changes during the first reproductive cycle, where peak values occurred in 8-day-old virgin female cockroaches, which were going to produce oothecae. The functions of Blage-HTH were studied using RNA interference (RNAi) to knockdown its expression. Adult virgin females of B. germanica injected with Blage-HTH dsRNA increased hemolymph trehalose levels in the late period of vitellogenesis more slowly than control. Furthermore, RNAi of Blage-HTH delayed oviposition time and some (10%) individuals did not produce the first ootheca until 15 days after eclosion, whereas the control group produced ootheca before 9 days in all cases.  相似文献   
2.
3.

Background

Insect metamorphosis proceeds in two modes: hemimetaboly, gradual change along the life cycle; and holometaboly, abrupt change from larvae to adult mediated by a pupal stage. Both are regulated by 20-hydroxyecdysone (20E), which promotes molts, and juvenile hormone (JH), which represses adult morphogenesis. Expression of Broad-complex (BR-C) is induced by 20E and modulated by JH. In holometabolous species, like Drosophila melanogaster, BR-C expression is inhibited by JH in young larvae and enhanced in mature larvae, when JH declines and BR-C expression specifies the pupal stage.

Methods

Using Blattella germanica as a basal hemimetabolous model, we determined the patterns of expression of BR-C mRNAs using quantitative RT-PCR, and we studied the functions of BR-C factors using RNA interference approaches.

Results

We found that BR-C expression is enhanced by JH and correlates with JH hemolymph concentration. BR-C factors appear to be involved in cell division and wing pad growth, as well as wing vein patterning.

Conclusions

In B. germanica, expression of BR-C is enhanced by JH, and BR-C factors appear to promote wing growth to reach the right size, form and patterning, which contrast with the endocrine regulation and complex functions observed in holometabolous species.

General significance

Our results shed new light to the evolution from hemimetaboly to holometaboly regarding BR-C, whose regulation and functions were affected by two innovations: 1) a shift in JH action on BR-C expression during young stages, from stimulatory to inhibitory, and 2) an expansion of functions, from regulating wing development, to determining pupal morphogenesis.  相似文献   
4.
The broad-specificity amino acid racemase (Bsar) from Pseudomonas putida catalyzes the racemization of various amino acids, offering a flexible and feasible platform to develop a new non-antibiotic selectable marker system for plant transformation. In the present study, we demonstrated that a Bsar variant, Bsar-R174K, that is useful as a selectable marker gene in Arabidopsis and rice that were susceptible to l-lysine and D-alanine. The introduction of wild-type Bsar, Bsar-R174K or Bsar-R174A into E. coli lysine or asparagine auxotrophs was able to rescue the growth of these microorganisms in minimal media supplemented with selectable amino acid enantiomers. The transformation of Arabidopsis with Bsar or Bsar variants based on d-alanine selection revealed that Bsar-R174K had the greatest efficiency (2.40%), superior to kanamycin selection-based transformation (1.10%). Whereas, l-lysine-based selection exhibited lower efficiency for Bsar-R174K (0.17%). The progenies of selected Bsar-R174K transgenic Arabidopsis revealed normal growth properties. In addition, Bsar-R174K transgenic rice was obtained on l-lysine medium with an efficiency of 0.9%, and the progenies of the transgenic rice revealed morphologically normal phenotypes comparable with their wild-type counterparts. This study presents the first report of broad range amino acid racemase Bsar-R174K as a non-antibiotic selectable marker system applied in transgenic plants.  相似文献   
5.
Helicobacter pylori AmiF formamidase that hydrolyzes formamide to produce formic acid and ammonia belongs to a member of the nitrilase superfamily. The crystal structure of AmiF was solved to 1.75A resolution using single-wavelength anomalous dispersion methods. The structure consists of a homohexamer related by 3-fold symmetry in which each subunit has an alpha-beta-beta-alpha four-layer architecture characteristic of the nitrilase superfamily. One exterior alpha layer faces the solvent, whereas the other one associates with that of the neighbor subunit, forming a tight alpha-beta-beta-alpha-alpha-beta-beta-alpha dimer. The apo and liganded crystal structures of an inactive mutant C166S were also determined to 2.50 and 2.30 A, respectively. These structures reveal a small formamide-binding pocket that includes Cys(166), Glu(60), and Lys(133) catalytic residues, in which Cys(166) acts as a nucleophile. Analysis of the liganded AmiF and N-carbamoyl d-amino acid amidohydrolase binding pockets reveals a common Cys-Glu-Lys triad, another conserved glutamate, and different subsets of ligand-binding residues. Molecular dynamic simulations show that the conserved triad has minimal fluctuations, catalyzing the hydrolysis of a specific nitrile or amide in the nitrilase superfamily efficiently.  相似文献   
6.
Various insects require intracellular bacteria that are restricted to specialized cells (bacteriocytes) and are transmitted vertically via the female ovary, but the transmission mechanisms are obscure. We hypothesized that, in the whitefly Bemisia tabaci, where intact bacteriocytes (and not isolated bacteria) are transferred to oocytes, the transmission mechanism would be evident as cellular and molecular differences between the nymph (pre-adult) and adult bacteriocytes. We demonstrate dramatic remodelling of bacteriocytes at the developmental transition from nymph to adulthood. This transition involves the loss of cell–cell adhesion, high division rates to constant cell size and onset of cell mobility, enabling the bacteriocytes to crawl to the ovaries. These changes are accompanied by cytoskeleton reorganization and changes in gene expression: genes functioning in cell–cell adhesion display reduced expression and genes involved in cell division, cell motility and endocytosis/exocytosis have elevated expression in adult bacteriocytes, relative to nymph bacteriocytes. This study demonstrates, for the first time, how developmentally orchestrated remodelling of gene expression and correlated changes in cell behaviour underpin the capacity of bacteriocytes to mediate the vertical transmission and persistence of the symbiotic bacteria on which the insect host depends.  相似文献   
7.
Gut microorganisms are essential for the nutritional health of many animals, but the underlying mechanisms are poorly understood. This study investigated how lipid accumulation by adult Drosophila melanogaster is reduced in flies associated with the bacterium Acetobacter tropicalis which displays oral–faecal cycling between the gut and food. We demonstrate that the lower lipid content of A. tropicalis-colonized flies relative to bacteria-free flies is linked with a parallel bacterial-mediated reduction in food glucose content; and can be accounted for quantitatively by the amount of glucose acquired by the flies, as determined from the feeding rate and assimilation efficiency of bacteria-free and A. tropicalis-colonized flies. We recommend that nutritional studies on Drosophila include empirical quantification of food nutrient content, to account for likely microbial-mediated effects on diet composition. More broadly, this study demonstrates that selective consumption of dietary constituents by microorganisms can alter the nutritional balance of food and, thereby, influence the nutritional status of the animal host.  相似文献   
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号