首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   7篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2007年   5篇
  2006年   2篇
  2005年   6篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1989年   4篇
  1988年   1篇
  1977年   3篇
  1973年   1篇
  1966年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
1.
Catecholamines induce net salt and water movements in duck red cells incubated in isotonic solutions. The rate of this response is approximately three times greater than a comparable effect observed in 400 mosmol hypertonic solutions in the absence of hormone (W.F. Schmidt and T. J. McManus. 1977 a.J. Gen. Physiol. 70:59-79. Otherwise, these two systems share a great many similarities. In both cases, net water and salt movements have a marked dependence on external cation concentrations, are sensitive to furosemide and insensitive to ouabain, and allow the substitution of rubidium for external potassium. In the presence of ouabain, but the absence of external potassium (or rubidium), a furosemide-sensitive net extrusion of sodium against a large electrochemical gradient can be demonstrated. When norepinephrine-treated cells are incubated with ouabain and sufficient external sodium, the furosemide-sensitive, unidirectional influxes of both sodium and rubidium are half- maximally saturated at similar rubidium concentrations; with saturating external rubidium, the same fluxes are half-maximal at comparable levels of external sodium. In the absence of sodium, a catecholamine-stimulated, furosemide-sensitive influx of rubidium persists. In the absence of rubidium, a similar but smaller component of sodium influx can be seen. We interpret these results in terms of a cotransport model for sodium plus potassium which is activated by hypertonicity or norepinephrine. When either ion is absent from the incubation medium, the system promotes an exchange-diffusion type of movement of the co-ion into the cells. In the absence of external potassium, net movement of potassium out of the cell leads to a coupled extrusion of sodium against its electrochemical gradient.  相似文献   
2.
A key component of a sound functional genomics infrastructure is the availability of a knockout mutant for every gene in the genome. A fruitful approach to systematically knockingout genes in the plant Arabidopsis thaliana has been the use of transferred-DNA (T-DNA) from Agrobacterium tumefaciens as an insertional mutagen. One of the assumptions underlying the use of T-DNA as a mutagen is that the insertion of these DNA elements into the Arabidopsis genome occurs at randomly selected locations. We have directly investigated the distribution of T-DNA insertions sites in populations of transformed Arabidopsis using two different approaches. To begin with, we utilized a polymerase chain reaction (PCR) procedure to systematically catalog the precise locations of all the T-DNA elements inserted within a 65 kb segment of chromosome IV. Of the 47 T-DNA insertions identified, 30% were found within the coding regions of genes. We also documented the insertion of T-DNA elements within the centromeric region of chromosome IV. In addition to these targeted T-DNA screens, we also mapped the genomic locations of 583 randomly chosen T-DNA elements by sequencing the genomic DNA flanking the insertion sites from individual T-DNA-transformed lines. 35% of these randomly chosen T-DNA insertions were located within the coding regions of genes. For comparison, coding sequences account for 44% of the Arabidopsis genome. Our results demonstrate that there is a small bias towards recovering T-DNA insertions within intergenic regions. However, this bias does not limit the utility of T-DNA as an effective insertional mutagen for use in reverse-genetic strategies.  相似文献   
3.
Tissue morphogenesis during development is regulated by growth factors and cytokines, and is characterized by constant remodeling of extracellular matrix (ECM) in response to signaling molecules, for example, growth factors, cytokines, and so forth. Proteoglycans that bind growth factors are potential regulators of tissue morphogenesis during embryonic development. In this study, we showed that transgenic mice overexpressing biglycan under the keratocan promoter exhibited exposure keratitis and premature eye opening from noninfectious eyelid ulceration due to perturbation of eyelid muscle formation and the failure of meibomian gland formation. In addition, in vitro analysis revealed that biglycan binds to TGF-alpha, thus interrupting EGFR signaling pathways essential for mesenchymal cell migration induced by eyelid epithelium. The defects of TGF-alpha signaling by excess biglycan were further augmented by the interruption of the autocrine or paracrine loop of the EGFR signaling pathway of HB-EGF expression elicited by TGF-alpha. These results are consistent with the notion that under physiological conditions, biglycan secreted by mesenchymal cells serves as a regulatory molecule for the formation of a TGF-alpha gradient serving as a morphogen of eyelid morphogenesis.  相似文献   
4.
5.
Metmyoglobin promotes arachidonic acid peroxidation at acid pH   总被引:1,自引:0,他引:1  
The ability of metmyoglobin and other heme proteins to promote peroxidation of arachidonic acid under acidic conditions was investigated. Incubation of metmyoglobin with arachidonic acid resulted in a pH-dependent increase in lipid peroxidation as measured by the formation of thiobarbituric acid reactive products and oxygen consumption. Increased peroxidation was observed at pH levels below 6.0, reaching a plateau between pH 5.5 and 5.0. At comparable heme concentrations, metmyoglobin was more efficient than oxymyoglobin, methemoglobin, or ferricytochrome c in promoting arachidonic acid peroxidation. Metmyoglobin also promoted peroxidation of 1-palmityl-2-arachidonyl phosphatidylcholine and methylarachidonate but at significantly lower rates than arachidonic acid. Addition of fatty acid-free albumin inhibited arachidonic acid peroxidation in a molar ratio of 6 to 1 (arachidonic acid:albumin). Both ionic and non-ionic detergents inhibited metmyoglobin-dependent arachidonic acid peroxidation under acidic conditions. The anti-oxidants butylated hydroxytoluene and nordihydroguaiaretic acid and low molecular weight compounds with reduced sulfhydryl groups inhibited the reaction. However, mannitol, benzoic acid, and deferoxamine were without significant effect. Visible absorption spectra of metmyoglobin following reaction with arachidonic acid showed minimal changes consistent with a low level of degradation of the heme protein during the reaction. These observations support the hypothesis that metmyoglobin and other heme proteins can promote significant peroxidation of unsaturated fatty acids under conditions of mildly acidic pH such as may occur at sites of inflammation and during myocardial ischemia and reperfusion. This may be the result of enhanced aggregation of the fatty acid and/or interaction of the fatty acid with heme under acidic conditions.  相似文献   
6.
7.
Past studies have established that the cornea like the lens abundantly expresses a few water-soluble enzyme/proteins in a taxon specific fashion. Based on these similarities it has been proposed that the lens and the cornea form a structural unit, the 'refracton', that has co-evolved through gene sharing to maximize light transmission and refraction to the retina. Thus far, the analogy between corneal crystallins and lens crystallins has been limited to similarities in the abundant expression, with few reports concerning their structural function. This review covers recent studies that establish a clear relationship between expression of corneal crystallins and light scattering from corneal stromal cells, i.e. keratocytes, that support a structural role for corneal crystallins in the development of transparency similar to that of lens crystallins that would be consistent with the 'refracton' hypothesis.  相似文献   
8.
Aldehyde dehydrogenase 1A1 (ALDH1A1) and ALDH3A1 are corneal crystallins. They protect inner ocular tissues from ultraviolet radiation (UVR)-induced oxidative damage through catalytic and non-catalytic mechanisms. Additionally, ALDH3A1 has been postulated to play a regulatory role in the corneal epithelium based on several studies that report an inverse association between ALDH3A1 expression and corneal cell proliferation. The underlying molecular mechanisms and the physiological significance of such association remain poorly understood. In the current study, we established Tet-On human corneal epithelial cell (hTCEpi) lines, which express tetracycline-inducible wild-type (wt) or catalytically-inactive (mu) ALDH3A1. Utilizing this cellular model system, we confirmed that human ALDH3A1 decreases corneal cell proliferation; importantly, this effect appears to be partially mediated by its enzymatic activity. Mechanistically, wt-ALDH3A1, but not mu-ALDH3A1, promotes sequestering of tumor suppressor p53 in the nucleus. In the mouse cornea, however, augmented cell proliferation is noted only in Aldh1a1-/-/3a1-/- double knockout (DKO) mice, indicating in vivo the anti-proliferation effect of ALDH3A1 can be rescued by the presence of ALDH1A1. Interestingly, the hyper-proliferative epithelium of the DKO corneas display nearly complete loss of p53 expression, implying that p53 may be involved in ALDH3A1/1A1-mediated effect. In hTCEpi cells grown in high calcium concentration, mRNA levels of a panel of corneal differentiation markers were altered by ALDH3A1 expression and modulated by its enzyme activity. In conclusion, we show for the first time that: (i) ALDH3A1 decreases corneal epithelial proliferation through both non-enzymatic and enzymatic properties; (ii) ALDH1A1 contributes to the regulation of corneal cellular proliferation in vivo; and (iii) ALDH3A1 modulates corneal epithelial differentiation. Collectively, our studies indicate a functional role of ALDH3A1 in the maintenance of corneal epithelial homeostasis by simultaneously modulating proliferation and differentiation through both enzymatic and non-enzymatic mechanisms.  相似文献   
9.
Restriction-map variation was studied in 126 copies of the G6pd region in X chromosome lines of Drosophila melanogaster from North America, Europe, and Africa. Special attention was focused on the distribution of variation relative to the geographically variable polymorphism for two electrophoretic variants. Nucleotide heterozygosity as determined by eight six-cutter restriction enzymes for the 13-kb region is estimated, on the basis of the worldwide sample, to be 0.065%, which is the lowest value reported for any comparable region in the D. melanogaster genome. Significant linkage disequilibrium between electrophoretic alleles and restriction-site variation is observed for several sites. In contrast to published studies of other genetic regions, there are large insertions that reach significant frequencies and are found across considerable geographic distances. There is a clustering of this variation inside the first large intervening sequence of the G6PD gene.   相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号