首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   383篇
  免费   32篇
  2023年   7篇
  2022年   14篇
  2021年   17篇
  2020年   5篇
  2019年   10篇
  2018年   15篇
  2017年   9篇
  2016年   12篇
  2015年   17篇
  2014年   24篇
  2013年   48篇
  2012年   40篇
  2011年   38篇
  2010年   18篇
  2009年   4篇
  2008年   17篇
  2007年   20篇
  2006年   9篇
  2005年   15篇
  2004年   13篇
  2003年   7篇
  2002年   12篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1991年   3篇
  1990年   3篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
  1970年   1篇
  1967年   1篇
  1958年   2篇
  1955年   1篇
  1952年   1篇
  1949年   3篇
  1947年   1篇
  1945年   1篇
  1944年   1篇
  1939年   1篇
  1938年   1篇
  1937年   1篇
  1936年   2篇
  1932年   1篇
  1924年   1篇
  1923年   1篇
  1912年   1篇
排序方式: 共有415条查询结果,搜索用时 31 毫秒
1.
2.
3.
Climate warming increases tree mortality which will require sufficient reproduction to ensure population viability. However, the response of tree reproduction to climate change remains poorly understood. Warming can reduce synchrony and interannual variability of seed production (“masting breakdown”) which can increase seed predation and decrease pollination efficiency in trees. Here, using 40 years of observations of individual seed production in European beech (Fagus sylvatica), we showed that masting breakdown results in declining viable seed production over time, in contrast to the positive trend apparent in raw seed count data. Furthermore, tree size modulates the consequences of masting breakdown on viable seed production. While seed predation increased over time mainly in small trees, pollination efficiency disproportionately decreased in larger individuals. Consequently, fecundity declined over time across all size classes, but the overall effect was greatest in large trees. Our study showed that a fundamental biological relationship—correlation between tree size and viable seed production—has been reversed as the climate has warmed. That reversal has diverse consequences for forest dynamics; including for stand- and biogeographical-level dynamics of forest regeneration. The tree size effects suggest management options to increase forest resilience under changing climates.  相似文献   
4.
To commemorate the 20th Anniversary of the Society of Melanoma Research and the first International Melanoma Research Congress held in June of 2003, we have described in brief, how the Society for Melanoma Research (SMR) began, the purpose, goals, and governance of the SMR, and how the society has evolved to support new melanoma researchers. In celebration of the immense progress in treating melanoma patients over the last 20 years and the impact of the SMR on these advances, we have highlighted memories and insight from early SMR members and founders.  相似文献   
5.
Upon the 20th Anniversary of the Society for Melanoma Research, we highlight the perspectives of patients aiming to help improve future experiences, outcomes, and their quality of life over the next 20 years. Five melanoma patients generously shared their inspiring and enlightening stories of diagnosis, treatment, and outcomes. Many patients had excellent medical teams that synergistically worked together to provide an accurate diagnosis, effective treatment options, and supportive care. However, it is clear that health inequities persist in communities where people of color are predominant, affecting early detection, patient experience, and outcomes. These stories shed light on the unique challenges faced by patients and how the lack of melanoma awareness and adequate resources, especially in communities of color or low socioeconomic status, can contribute to disparate outcomes in melanoma care. We expect that these stories will raise awareness about the progress in melanoma treatment but also the existent disparities in melanoma diagnosis and treatment and the importance of early detection and prevention.  相似文献   
6.
The inaugural Diversity and Inclusion in Science Session was held during the 2021 Society for Melanoma Research (SMR) congress. The goal of the session was to discuss diversity, equity, and inclusion in the melanoma research community and strategies to promote the advancement of underrepresented melanoma researchers. An international survey was conducted to assess the diversity, equity, and inclusion (DEI) climate among researchers and clinicians within the Society for Melanoma Research (SMR). The findings suggest there are feelings and experiences of inequity, bias, and harassment within the melanoma community that correlate with one's gender, ethnic/racial group, and/or geographic location. Notably, significant reports of inequity in opportunity, discrimination, and sexual harassment demonstrate there is much work remaining to ensure all scientists in our community experience an academic workplace culture built on mutual respect, fair access, inclusion, and equitable opportunity.  相似文献   
7.
Summary We examined metaphases from three patients with chronic myeloid leukaemia and a typical Philadelphia chromosome with one chromosome 9 as the recipient to determine whether the 9q+ 22q- translocation is reciprocal. Good quality G-banded photographs of the chromosomes concerned were subjected to light absorption density analysis. This provided enlarged tracings corresponding to the relevant chromosome regions and so facilitated accurate measurement. This technique has unambiguously shown that the typical Philadelphia chromosome results from a reciprocal translocation and that probably no material is gained or lost in the exchange. Furthermore, in a total of six patients for whom sequential G and C banding was performed, the chromosome 9 with the largest block of centromeric heterochromatin received the translocated material. We offer tentative explanations for this curious observation.  相似文献   
8.
9.
10.
The mitotic checkpoint (also called spindle assembly checkpoint, SAC) is a signaling pathway that safeguards proper chromosome segregation. Correct functioning of the SAC depends on adequate protein concentrations and appropriate stoichiometries between SAC proteins. Yet very little is known about the regulation of SAC gene expression. Here, we show in the fission yeast Schizosaccharomyces pombe that a combination of short mRNA half‐lives and long protein half‐lives supports stable SAC protein levels. For the SAC genes mad2 + and mad3 +, their short mRNA half‐lives are caused, in part, by a high frequency of nonoptimal codons. In contrast, mad1 + mRNA has a short half‐life despite a higher frequency of optimal codons, and despite the lack of known RNA‐destabilizing motifs. Hence, different SAC genes employ different strategies of expression. We further show that Mad1 homodimers form co‐translationally, which may necessitate a certain codon usage pattern. Taken together, we propose that the codon usage of SAC genes is fine‐tuned to ensure proper SAC function. Our work shines light on gene expression features that promote spindle assembly checkpoint function and suggests that synonymous mutations may weaken the checkpoint.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号