首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   4篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2015年   4篇
  2014年   1篇
  2013年   1篇
排序方式: 共有11条查询结果,搜索用时 922 毫秒
1.
2.
3.
Predation pressure may affect many aspects of prey behavior, including forming groups and changes in social interactions. We studied the aggregation behavior of competing gammarids Dikerogammarus villosus and Pontogammarus robustoides (Amphipoda, Crustacea) to check whether they modify their preferences for conspecifics or heterospecifics in response to predator (the racer goby Babka gymnotrachelus) kairomones in the presence or absence of stone shelters (alternative protection source). Both species exhibited preferences toward shelters occupied by conspecifics over empty shelters and conspecifics apart from shelters, suggesting that their aggregation depends not only on habitat heterogeneity, but also on their social interactions. Moreover, gammarids in the presence of shelters (safer conditions) preferred conspecifics over heterospecifics, but predator kairomones made them form aggregations irrespective of species. In the predator presence, P. robustoides increased its aggregation level only in the sheltered conditions, whereas D. villosus exhibited this response only in the absence of shelters, suggesting that this behavior can protect it against predators. Therefore, we tested the antipredator effectiveness of D. villosus aggregations by exposing them to fish predation. Gobies foraged most effectively on immobile single gammarids compared to moving and aggregated individuals. Fish also avoided aggregated prey, confirming the protective character of aggregations. We have demonstrated that the predator presence increases aggregation level of prey gammarids and affects their social behavior by reducing antagonistic interactions and avoidance between competing species. This is likely to affect their distribution and functioning in the wild, where predator pressure is a standard situation.  相似文献   
4.
5.
6.
Racer goby is one of several Ponto–Caspian gobiids spreading throughout European rivers and concurrent with recent declines in threatened populations of a native species of similar biology, the European bullhead. Although suggestive of competitive interactions, evidence thereof is scarce, so we examined behavioural interactions between racer goby and bullhead (single specimens of each species together, also pairs of each species) under experimental conditions (shared space with two shelters) to determine whether the invader displaces the native species when food resources are limited. Food (live chironomids) was added to a single feeder at rates below satiation levels twice over 24 h (once in light and once in darkness), with fish behaviour (aggressive interactions: attacks and threatening) and feeding activity (time spent near or inside the feeder) recorded using video cameras and infrared illumination. Racer goby exhibited aggressive behaviour towards bullhead (mean = 2.5 aggressive events h?1), but rarely the inverse (threatening only, mean = 0.05 events h?1), significantly limiting bullhead foraging time (by 62 %) and being faster to reach food in the feeding time in 76 % of cases. Gobies were more aggressive during daylight (77 % of all aggressive events occurring in light), and both species spent more time on feeding activities in darkness (88 and 66 % of all time spent in the feeder by bullheads and gobies, respectively). However, the adverse impact of goby on bullhead was independent of light conditions. Our results suggest that under natural conditions, racer goby are likely to displace bullhead during feeding, with potential consequences for foraging efficiency.  相似文献   
7.
Biological invasions cause organisms to face new predators, but also supply new anti-predator shelters provided by alien ecosystem engineers. We checked the level of anti-predator protection provided to three gammarid species by an invasive Ponto-Caspian zebra mussel Dreissena polymorpha, known for its habitat modification abilities. We used gammarids differing in their origin and level of association with mussels: Ponto-Caspian aliens Dikerogammarus villosus (commonly occurring in mussel beds) and Pontogammarus robustoides (not associated with mussels), as well as native European Gammarus fossarum (not co-occurring with dreissenids). The gammarids were exposed to predation of two fish species: the racer goby Babka gymnotrachelus (Ponto-Caspian) and Amur sleeper Perccottus glenii (Eastern Asian). This set of organisms allowed us to check whether the origin and level of association with mussels of both prey and predators affect the ability of gammarids to utilize zebra mussel beds as shelters. We tested gammarid survival in the presence of fish and one of five substrata: sand, macrophytes, stones, living mussels and empty mussel valves. D. villosus survived better than its congeners on all substrata, and its survival was highest in living dreissenids. The survival of the other gammarids was similar on all substrata. Both fish species exhibited similar predation efficiency. Thus, D. villosus, whose affinity to dreissenids has already been established, utilizes them as protection from fish predators, including allopatric predators, more efficiently than other amphipods. Therefore, the presence of dreissenids in areas invaded by D. villosus is likely to help the invader establish itself in a new place.  相似文献   
8.
Hydrobiologia - The monkey goby Neogobius fluviatilis is an invasive Ponto-Caspian fish that enters habitats of the native gudgeon Gobio gobio in European freshwaters, likely belonging to the same...  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号