首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   8篇
  2020年   1篇
  2015年   1篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  1998年   2篇
  1996年   1篇
  1973年   1篇
  1972年   2篇
  1966年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
Preethi  P.  Rahman  Shafeeq  Naganeeswaran  S.  Sabana  A. A.  Gangaraj  K. P.  Jerard  B. A.  Niral  V.  Rajesh  M. K. 《Molecular biology reports》2020,47(12):9385-9397
Molecular Biology Reports - Genetic improvement in coconut relies on exploiting the vast existing diversity among coconut accessions. Robust molecular markers are a pre-requisite for efficient...  相似文献   
2.

Background

Diabetes mellitus (DM) is recognised as an important risk factor to tuberculosis (TB). India has high TB burden, along with rising DM prevalence. There are inadequate data on prevalence of DM and pre-diabetes among TB cases in India. Aim was to determine diabetes prevalence among a cohort of TB cases registered under Revised National Tuberculosis Control Program in selected TB units in Tamil Nadu, India, and assess pattern of diabetes management amongst known cases.

Methods

827 among the eligible patients (n = 904) underwent HbA1c and anthropometric measurements. OGTT was done for patients without previous history of DM and diagnosis was based on WHO criteria. Details of current treatment regimen of TB and DM and DM complications, if any, were recorded. A pretested questionnaire was used to collect information on sociodemographics, habitual risk factors, and type of TB.

Findings

DM prevalence was 25.3% (95% CI 22.6–28.5) and that of pre-diabetes 24.5% (95% CI 20.4–27.6). Risk factors associated with DM among TB patients were age (31–35, 36–40, 41–45, 46–50, >50 years vs <30 years) [OR (95% CI) 6.75 (2.36–19.3); 10.46 (3.95–27.7); 18.63 (6.58–52.7); 11.05 (4.31–28.4); 24.7 (9.73–62.7) (p<0.001)], positive family history of DM [3.08 (1.73–5.5) (p<0.001)], sedentary occupation [1.69 (1.10–2.59) (p = 0.016)], and BMI (18.5–22.9, 23–24.9 and ≥25 kg/m2 vs <18.5 kg/m2) [2.03 (1.32–3.12) (p = 0.001); 0.87 (0.31–2.43) (p = 0.78); 1.44 (0.54–3.8) (p = 0.47)]; for pre-diabetes, risk factors were age (36–40, 41–45, 46–50, >50 years vs <30 years) [2.24 (1.1–4.55) (p = 0.026); 6.96 (3.3–14.7); 3.44 (1.83–6.48); 4.3 (2.25–8.2) (p<0.001)], waist circumference [<90 vs. ≥90 cm (men), <80 vs. ≥80 cm (women)] [3.05 (1.35–6.9) (p = 0.007)], smoking [1.92 (1.12–3.28) (p = 0.017)] and monthly income (5000–10,000 INR vs <5000 INR) [0.59 (0.37–0.94) (p = 0.026)]. DM risk was higher among pulmonary TB [3.06 (1.69–5.52) (p<0.001)], especially sputum positive, than non-pulmonary TB.

Interpretation

Nearly 50% of TB patients had either diabetes or pre-diabetes.  相似文献   
3.
4.
Though RecQL4 was shown to be essential for the initiation of DNA replication in mammalian cells, its role in initiation is poorly understood. Here, we show that RecQL4 is required for the origin binding of Mcm10 and Ctf4, and their physical interactions and association with replication origins are controlled by the concerted action of both CDK and DDK activities. Although RecQL4-dependent binding of Mcm10 and Ctf4 to chromatin can occur in the absence of pre-replicative complex, their association with replication origins requires the presence of the pre-replicative complex and CDK and DDK activities. Their association with replication origins and physical interactions are also targets of the DNA damage checkpoint pathways which prevent initiation of DNA replication at replication origins. Taken together, the RecQL4-dependent association of Mcm10 and Ctf4 with replication origins appears to be the first important step controlled by S phase promoting kinases and checkpoint pathways for the initiation of DNA replication in human cells.  相似文献   
5.
The recruitment of DNA ligase I to replication foci and the efficient joining of Okazaki fragments is dependent on the interaction between DNA ligase I and proliferating cell nuclear antigen (PCNA). Although the PCNA sliding clamp tethers DNA ligase I to nicked duplex DNA circles, the interaction does not enhance DNA joining. This suggests that other factors may be involved in the joining of Okazaki fragments. In this study, we describe an association between replication factor C (RFC), the clamp loader, and DNA ligase I in human cell extracts. Subsequently, we demonstrate that there is a direct physical interaction between these proteins that involves both the N- and C-terminal domains of DNA ligase I, the N terminus of the large RFC subunit p140, and the p36 and p38 subunits of RFC. Although RFC inhibited DNA joining by DNA ligase I, the addition of PCNA alleviated inhibition by RFC. Notably, the effect of PCNA on ligation was dependent on the PCNA-binding site of DNA ligase I. Together, these results provide a molecular explanation for the key in vivo role of the DNA ligase I/PCNA interaction and suggest that the joining of Okazaki fragments is coordinated by pairwise interactions among RFC, PCNA, and DNA ligase I.  相似文献   
6.
Purified RNA polymerase, DNA polymerase III and unwinding protein of Escherichiacoli catalyze limited rifampicin sensitive fd or ØX 174 DNA-dependent DNA synthesis. A protein has been partially purified from E.coli which stimulates rifampicin sensitive dXMP incorporation in this system 20 to 30 fold. This protein also stimulates DNA synthesis catalyzed by DNA polymerases I and II; the stimulation occurs in reactions primed with natural and synthetic DNAs as well as RNA-DNA hybrids. The protein is not a product of the known dna genes. In contrast to the above system of purified enzymes, rifampicin sensitive dXMP incorporation in crude extracts of E.coli is specifically dependent on fd but not ØX 174 DNA. An additional factor has been isolated from extracts of E.coli which restores specificity to the purified rifampicin sensitive system by preventing ØX 174 DNA from serving as a template.  相似文献   
7.
In the presence of dATP, glycerol, and Tris buffer, the DNA primase isolated from Thermococcus kodakaraensis catalyzed the formation of dAMP and two products that were identified as dAMP-glycerol and dAMP-Tris. These products were formed by the T. kodakaraensis p41 catalytic subunit alone and the T. kodakaraensis p41-p46 complex in the absence of a DNA template. They were not formed with preparations containing the catalytically inactive p41 subunit. Similar glycerol and Tris derivatives as well as dNMPs were also formed with dGTP, dCTP, or dTTP. The mechanism contributing to the formation of these products and its implications in the initiation reaction catalyzed by the T. kodakaraensis primase are discussed.  相似文献   
8.
In most organisms, DNA replication is initiated by DNA primases, which synthesize primers that are elongated by DNA polymerases. In this study, we describe the isolation and biochemical characterization of the DNA primase complex and its subunits from the archaeon Thermococcus kodakaraensis. The T. kodakaraensis DNA primase complex is a heterodimer containing stoichiometric levels of the p41 and p46 subunits. The catalytic activity of the complex resides within the p41 subunit. We show that the complex supports both DNA and RNA synthesis, whereas the p41 subunit alone marginally produces RNA and synthesizes DNA chains that are longer than those formed by the complex. We report that the T. kodakaraensis primase complex preferentially interacts with dNTP rather than ribonucleoside triphosphates and initiates RNA as well as DNA chains de novo. The latter findings indicate that the archaeal primase complex, in contrast to the eukaryote homolog, can initiate DNA chain synthesis in the absence of ribonucleoside triphosphates. DNA primers formed by the archaeal complex can be elongated extensively by the T. kodakaraensis DNA polymerase (Pol) B, whereas DNA primers formed by the p41 catalytic subunit alone were not. Supplementation of reactions containing the p41 subunit with the p46 subunit leads to PolB-catalyzed DNA synthesis. We also established a rolling circle reaction using a primed 200-nucleotide circle as the substrate. In the presence of the T. kodakaraensis minichromosome maintenance (MCM) 3' → 5' DNA helicase, PolB, replication factor C, and proliferating cell nuclear antigen, long leading strands (>10 kb) are produced. Supplementation of such reactions with the DNA primase complex supported lagging strand formation as well.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号