首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2013年   1篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  1998年   1篇
  1995年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The small ubiquitin-related modifiers (SUMOs) are evolutionarily conserved polypeptides that are covalently conjugated to protein targets to modulate their subcellular localization, half-life, or activity. Steady-state SUMO conjugation levels increase in response to many different types of environmental stresses, but how the SUMO system is regulated in response to these insults is not well understood. Here, we characterize a novel mode of SUMO system control: in response to elevated alcohol levels, the Saccharomyces cerevisiae SUMO protease Ulp1 is disengaged from its usual location at the nuclear pore complex (NPC) and sequestered in the nucleolus. We further show that the Ulp1 region previously demonstrated to interact with the karyopherins Kap95 and Kap60 (amino acids 150 to 340) is necessary and sufficient for nucleolar targeting and that enforced sequestration of Ulp1 in the nucleolus significantly increases steady-state SUMO conjugate levels, even in the absence of alcohol. We have thus characterized a novel mechanism of SUMO system control in which the balance between SUMO-conjugating and -deconjugating activities at the NPC is altered in response to stress via relocalization of a SUMO-deconjugating enzyme.The small ubiquitin-related modifiers (SUMOs) are a family of evolutionarily conserved polypeptides that are conjugated to protein targets via the concerted action of SUMO-specific E1 (activation), E2 (conjugation), and E3 (ligase) enzymes to effect changes in subcellular localization, half-life, or target activity. A family of SUMO-specific proteases act to remove the modifier from conjugates (8, 20). The SUMO system has been implicated in a variety of critical cellular functions, such as DNA repair and replication, RNA metabolism, and stress responses (8, 16, 20). Importantly, the SUMO system is highly dynamic and the SUMO pathway enzymes appear to work together to precisely control SUMO conjugate levels in the cell (8, 16, 20). However, how the SUMO system itself is regulated is poorly understood.Localization of the SUMO pathway enzymes may play an important role in SUMO system function (21). For example, the budding yeast SUMO protease Ulp1 is tethered to the nuclear face of the nuclear pore complex (NPC) via an unconventional interaction with the karyopherin Kap121 and the heterodimeric Kap95/Kap60 complex (12, 13, 23). However, this SUMO protease is not maintained exclusively at the NPC but appears to be mobile, effecting desumoylation at diverse subcellular locations: e.g., during mitosis, Saccharomyces cerevisiae Ulp1 is recruited to the septin ring to desumoylate septins (15), Schizosaccharomyces pombe Ulp1 localization is regulated throughout the cell cycle (31), and a mammalian Ulp1 homolog, SENP2, is shuttled between the nucleus and the cytoplasm (7). Consistent with these observations, SUMO conjugate levels are significantly altered in yeast strains expressing mislocalized Ulp1 (13, 37).Dramatic changes in SUMO conjugate populations have been noted in response to many different types of stresses in yeasts, mammals, and plants (9, 17, 27, 32, 38). For example, in S. cerevisiae, significantly increased steady-state SUMO conjugate levels are observed in response to elevated concentrations of ethanol (38). To better understand how the SUMO system is regulated in response to stress, we utilized alcohol as a model of a physiologically relevant stressor in yeast. Here, we demonstrate that alcohol stress results in a rapid, reversible nucleolar sequestration of Ulp1 and that enforced localization of Ulp1 in the nucleolus leads to a dramatic increase in steady-state SUMO conjugate levels. This is the first demonstration of regulated modulation of the intracellular localization of a SUMO enzyme in response to stress and thus represents a novel mechanism for SUMO system control.  相似文献   
2.
Ubiquitin (Ub) and the ubiquitin‐like proteins (Ubls) comprise a remarkable assortment of polypeptides that are covalently conjugated to target proteins (or other biomolecules) to modulate their intracellular localization, half‐life, and/or activity. Identification of Ub/Ubl conjugation sites on a protein of interest can thus be extremely important for understanding how it is regulated. While MS has become a powerful tool for the study of many classes of PTMs, the identification of Ub/Ubl conjugation sites presents a number of unique challenges. Here, we present an improved Ub/Ubl conjugation site identification strategy, utilizing SUMmOn analysis and an additional protease (lysyl endopeptidase C), as a complement to standard approaches. As compared with standard trypsin proteolysis‐database search protocols alone, the addition of SUMmOn analysis can (i) identify Ubl conjugation sites that are not detected by standard database searching methods, (ii) better preserve Ub/Ubl conjugate identity, and (iii) increase the number of identifications of Ub/Ubl modifications in lysine‐rich protein regions. Using this methodology, we characterize for the first time a number of novel Ubl linkages and conjugation sites, including alternative yeast (K54) and mammalian small ubiquitin‐related modifier (SUMO) chain (SUMO‐2 K42, SUMO‐3 K41) assemblies, as well as previously unreported NEDD8 chain (K27, K33, and K54) topologies.  相似文献   
3.
4.
5.
Basque nationalism is singled out in the literature as a case of minority nationalism that faces an ongoing struggle between those in support of a liberal-inclusive definition of the nation and those favouring an exclusive-racialist one. Nevertheless, Basque nationalist parties have been welcoming of immigration and have legislated to create a regional citizenship based on residence rather than ethnicity. This article argues that, at least in part, the ‘positive’ response of Basque nationalists to the immigration wave that began in the early 2000s is an attempt to strengthen national solidarity by contrasting Basque values of openness and tolerance against the restrictive nature of the reforms to the immigration law in Spain that were initiated in 2000. This argument challenges the notion that sub-state nationalists are hostile to immigration because of the threat diversity poses to the nationalist project.  相似文献   
6.
Gunde-Cimerman  Nina  Zalar  Polona  Jeram  Sonja 《Mycopathologia》1998,141(2):111-114
By using different techniques and media, microfungi were isolated from cadavers of the cave cricket Troglophilus neglectus, collected on the walls of a Slovenian cave. The isolated mycobiota was consistently different for adult and larval stages of T. neglectus cadavers. Fungi isolated with the highest frequency from the larval stage were represented by five different species of the genus Mucor, the prevailing one being a newly described species, M. troglophilus. The dominating fungus isolated from the adult stage was the well-known fungal entomopathogen Beauveria bassiana. The other isolated fungi were mainly primary and secondary saprotrophic colonizers. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
7.
8.
Troglophilus neglectus (Gryllacridoidea, Raphidophoridae) is a nocturnal Ensifera which can be found in caves of Slovenia. The anatomy of the tibial organs in the fore-, mid-, and hindlegs, as well as the external morphology of the proximal fore-tibia and the prothoracic tracheal system, is described comparatively. In the prothorax and in the forelegs, no sound-conducting structures such as an acoustic trachea, enlarged spiracles, or tympana are developed. A group of 8–10 campaniform sensillae is located in the dorsal cuticle of the proximal tibia. In each leg, the tibial organ complex is built up by two scolopale organs, the subgenual organ and the intermediate organ; the structure and the number of scolopidia is similar in each leg. No structure resembling the crista acoustica is found. The subgenual organ contains around 30 scolopidia; the intermediate organ is subdivided into a proximal part containing 8-9 scolopidia and a distal part with 5–6 scolopidia. The two groups of scolopidia are not directly connected to the tracheal system. The tibial organs in the forelegs are insensitive to airborne sound, and they appear to be more primitive compared to those found in members of the Tettigoniidae and the Gwllidae. The results indicate that the complex tibial organs in all legs of T. neglectus are primarily vibrosensitive. © 1995 Wiley-Liss, Inc.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号