首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   1篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
排序方式: 共有32条查询结果,搜索用时 304 毫秒
1.
2.
3.
Split inteins have been used as a versatile tool in protein engineering to mediate efficient in vivo and in vitro trans-splicing of a protein. The trans-splicing ability of split inteins was also applied to the in vivo cyclization of a protein. However, cyclization efficiency is dependent upon the type of split inteins employed and the conditions under which cyclization occur. In this study, a novel reporter system that easily measures the cyclization efficiency of split inteins was developed. For this purpose TEM-1 beta-lactamase was divided into two fragments (24 approximately 215 and 216 approximately 286 amino acids) and circularly permuted. The circularly permuted beta-lactamase expressed in Escherichia coli showed little beta-lactamase activity, most likely due to the structural modification of the protein. However, when the circularly permuted beta-lactamase was cyclized by the Synechocystis sp. PCC6803 DnaB split mini-intein, beta-lactamase activity both in vitro and in vivo was recovered. These results suggest that the novel reporter system can be exploited to develop new inteins with high efficiency of in vivo protein cyclization.  相似文献   
4.
Dendritic spines are actin-rich structures, the formation and plasticity of which are regulated by the Rho GTPases in response to synaptic input. Although several guanine nucleotide exchange factors (GEFs) have been implicated in spine development and plasticity in hippocampal neurons, it is not known how many different Rho GEFs contribute to spine morphogenesis or how they coordinate the initiation, establishment, and maintenance of spines. In this study, we screened 70 rat Rho GEFs in cultured hippocampal neurons by RNA interference and identified a number of candidates that affected spine morphogenesis. Of these, Dock180, which plays a pivotal role in a variety of cellular processes including cell migration and phagocytosis, was further investigated. We show that depletion of Dock180 inhibits spine morphogenesis, whereas overexpression of Dock180 promotes spine morphogenesis. ELMO1, a protein necessary for in vivo functions of Dock180, functions in a complex with Dock180 in spine morphogenesis through activating the Rac GTPase. Moreover, RhoG, which functions upstream of the ELMO1/Dock180 complex, is also important for spine formation. Together, our findings uncover a role for the RhoG/ELMO1/Dock180 signaling module in spine morphogenesis in hippocampal neurons.  相似文献   
5.
Human fungal pathogens that cause invasive infections are hidden killers, taking lives of one and a half million people every year. However, research progress in this field has not been rapid enough to effectively prevent or treat life-threatening fungal diseases. To update recent research progress and promote more active research in the field of human fungal pathogens, eleven review articles concerning the virulence mechanisms and host interactions of four major human fungal pathogens–Candida albicans, Cryptococcus neoformans, Aspergillus fumigatus, and Histoplasma capsulatum–are presented in this special issue.  相似文献   
6.
Silent Information Regulator 2 (Sir2), a conserved NAD+-dependent histone deacetylase, has been implicated as one of the key factors in regulating stress response and longevity. Here, we report that the role of Sir2 in oxidative stress resistance and chronological lifespan is dependent on growth phase in yeast. In exponential phase, sir2Δ cells were more resistant to H2O2 stress and had a longer chronological lifespan than wild type. By contrast, in post-diauxic phase, sir2Δ cells were less resistant to H2O2 stress and had a shorter chronological lifespan than wild type cells. Similarly, the expression of antioxidant genes, which are essential to cope with oxidative stress, was regulated by Sir2 in a growth phasedependent manner. Collectively, our findings highlight the importance of the metabolic state of the cell in determining whether Sir2 can protect against or accelerate cellular aging of yeast.  相似文献   
7.
Expression of proteins on the surface of yeast has a wide range of applications, such as development of live vaccines, screening of antibody libraries, and use as whole-cell biocatalysts. The hemiascomycetes yeast Yarrowia lipolytica has been raised as a potential host for heterologous expression of recombinant proteins. In this study, we report the expression of Aspergillus saitoi α-1,2-mannosidase, encoded by the msdS gene, on the cell surface of Y. lipolytica. As the first step to achieve the secretory expression of msdS protein, four different signal sequences-derived from the endogenous Y. lipolytica Lip2 and Xpr2 prepro regions and the heterologous A. niger α-amylase and rice α-amylase signal sequences-were analyzed for their secretion efficiency. It was shown that the YlLip2 prepro sequence was most efficient in directing the secretory expression of msdS in fully N-glycosylated forms. The surface display of msdS was subsequently directed by fusing GPI anchoring motifs derived from Y. lipolytica cell wall proteins, YlCwp1p and YlYwp1p, respectively, to the C-terminus of the Lip2 prepro-msdS protein. The expression of actively functional msdS protein on the cell surface was confirmed by western blot, flow cytometry analysis, along with the α-1,2-mannosidase activity assay using intact Y. lipolytica cells as the enzyme source. Furthermore, the glycoengineered Y. lipolytica Δoch1Δmpo1 strains displaying α-1,2-mannosidase were able to convert Man8GlcNAc2 to Man5GlcNAc2 efficiently on their cell-wall mannoproteins, demonstrating its potential used for glycoengineering in vitro or in vivo.  相似文献   
8.

Mannosylphosphorylated glycans are found only in fungi, including yeast, and the elimination of mannosylphosphates from glycans is a prerequisite for yeast glyco-engineering to produce human-compatible glycoproteins. In Saccharomyces cerevisiae, MNN4 and MNN6 genes are known to play roles in mannosylphosphorylation, but disruption of these genes does not completely remove the mannosylphosphates in N-glycans. This study was performed to find unknown key gene(s) involved in N-glycan mannosylphosphorylation in S. cerevisiae. For this purpose, each of one MNN4 and five MNN6 homologous genes were deleted from the och1Δmnn1Δmnn4Δmnn6Δ strain, which lacks yeast-specific hyper-mannosylation and the immunogenic α(1,3)-mannose structure. N-glycan profile analysis of cell wall mannoproteins and a secretory recombinant protein produced in mutants showed that the MNN14 gene, an MNN4 paralog with unknown function, is essential for N-glycan mannosylphosphorylation. Double disruption of MNN4 and MNN14 genes was enough to eliminate N-glycan mannosylphosphorylation. Our results suggest that the S. cerevisiae och1Δmnn1Δmnn4Δmnn14Δ strain, in which all yeast-specific N-glycan structures including mannosylphosphorylation are abolished, may have promise as a useful platform for glyco-engineering to produce therapeutic glycoproteins with human-compatible N-glycans.

  相似文献   
9.
Galactose can be used not only as an inducer of the GAL promoters, but also as a carbon source by Saccharomyces cerevisiae, which makes recombinant fermentation processes that use GAL promoters complicated and expensive. To overcome this problem during the cultivation of the recombinant strain expressing human serum albumin (HSA) from the GAL10 promoter, a gal1 Delta mutant strain was constructed and its induction kinetics investigated. As expected, the gal1 Delta strain did not use galactose, and showed high levels of HSA expression, even at extremely low galactose concentrations (0.05-0.1 g/L). However, the gal1 Delta strain produced much more ethanol, in a complex medium containing glucose, than the GAL1 strain. To improve the physiological properties of the gal1 Delta mutant strain as a host for heterologous protein production, a null mutation of either MIG1 or HXK2 was introduced into the gal1 Delta mutant strain, generating gal1 Delta mig1 Delta and gal1 Delta hxk2 Delta double strains. The gal1 Delta hxk2 Delta strain showed a decreased rate of ethanol synthesis, with an accelerated rate of ethanol consumption, compared to the gal1 Delta strain, whereas the gal1 Delta mig1 Delta strain showed similar patterns to the gal1 Delta strain. Furthermore, the gal1 Delta hxk2 Delta strain secreted much more recombinant proteins (HSA and HSA fusion proteins) than the other strains. The results suggest that the gal1 Delta hxk2 Delta strain would be useful for the large-scale production of heterologous proteins from the GAL10 promoter in S. cerevisiae.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号