首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Kim  Ok-Hee  Kang  Gun-Hyung  Noh  Hyungjoon  Cha  Ji-Young  Lee  Ho-Jae  Yoon  Jeong-Hwan  Mamura  Mizuko  Nam  Jeong-Seok  Lee  Dae Ho  Kim  Young A.  Park  Young Joo  Kim  Hyeonjin  Oh  Byung-Chul 《Molecules and cells》2013,36(5):432-438
Tumor-associated macrophages (TAMs) accumulate in various cancers and promote tumor angiogenesis and metastasis, and thus may be ideal targets for the clinical diagnosis of tumor metastasis with high specificity. However, there are few specific markers to distinguish between TAMs and normal or inflammatory macrophages. Here, we show that TAMs localize in green fluorescent protein-labeled tumors of metastatic lymph nodes (MLNs) from B16F1 melanoma cells but not in necrotic tumor regions, suggesting that TAMs may promote the growth of tumor cells and the progression of tumor metastasis. Furthermore, we isolated pure populations of TAMs from MLNs and characterized their gene expression signatures compared to peritoneal macrophages (PMs), and found that TAMs significantly overexpress immunosuppressive cytokines such as IL-4, IL-10, and TGF-β as well as proangiogenic factors such as VEGF, TIE2, and CD31. Notably, immunological analysis revealed that TIE2+/CD31+ macrophages constitute the predominant population of TAMs that infiltrate MLNs, distinct from tissue or inflammatory macrophages. Importantly, these TIE2+/CD31+ macrophages also heavily infiltrated MLNs from human breast cancer biopsies but not reactive hyperplastic LNs. Thus, TIE2+/CD31+ macrophages may be a unique histopathological biomarker for detecting metastasis in clinical diagnosis, and a novel and promising target for TAM-specific cancer therapy.  相似文献   
2.

Background/Objective

There have been several operative techniques for adenoidectomy and their efficacy and morbidity are different according to the technique. This prospective multicenter study was aimed to compare the efficacy and morbidity of coblation adenoidectomy (CA) with those of power-assisted adenoidectomy.

Study Design

Prospective multi-institutional study.

Methods

Children who underwent CA, power-assisted adenoidectomy with cauterization (PAA+C) or without cauterization (PAA-C) due to adenoid hypertrophy were enrolled from 13 hospitals between July 2013 and June 2014. Mean operation time, degree of intraoperative bleeding and postoperative bleeding rate were evaluated.

Results

A total of 388 children (mean age ± standard deviation = 6.6 ± 2.5 years; 245 males and 143 females) were included. According to the adenoidectomy technique, the children were classified into 3 groups: (1) CA (n = 116); (2) PAA+C (n = 153); and (3) PAA-C (n = 119). Significant differences were not found in age and sex among three groups. In the CA group, mean operation time was significantly shorter (P < 0.001) and degree of intraoperative bleeding was significantly less (P < 0.001) compared to PAA+C or PAA-C group. Delayed postoperative bleeding rate of PAA-C group was significantly higher than that of CA or PAA+C group (P = 0.016).

Conclusions

This prospective multicenter study showed that CA was superior to PAA in terms of mean operation time and degree of intraoperative bleeding.  相似文献   
3.
4.

Objectives

Vocal fold (VF) scarring remains a therapeutic challenge. Granulocyte-macrophage colony-stimulating factor (GM-CSF) facilitates epithelial wound healing, and recently, growth factor therapy has been applied to promote tissue repair. This study was undertaken to investigate the effect of GM-CSF on VF wound healing in vivo and in vitro.

Methods

VF scarring was induced in New Zealand white rabbits by direct injury. Immediately thereafter, either GM-CSF or PBS was injected into the VFs of rabbits. Endoscopic, histopathological, immunohistochemical, and biomechanical evaluations of VFs were performed at 3 months post-injury. Human vocal fold fibroblasts (hVFFs) were cultured with GM-CSF. Production of type I and III collagen was examined immunocytochemically, and the synthesis of elastin and hyaluronic acids was evaluated by ELISA. The mRNA levels of genes related to ECM components and ECM production-related growth factors, such as HGF and TGF-ß1, were examined by real time RT-PCR.

Results

The GM-CSF-treated VFs showed reduced collagen deposition in comparison to the PBS-injected controls (P<0.05). Immunohistochemical staining revealed lower amounts of type I collagen and fibronectin in the GM-CSF-treated VFs (P<0.05 and P<0.01, respectively). Viscous and elastic shear moduli of VF samples were significantly lower in the GM-CSF group than in the PBS-injected group (P<0.001 and P<0.01, respectively). Mucosal waves in the GM-CSF group showed significant improvement when compared to the PBS group (P = 0.0446). GM-CSF inhibited TGF-β1-induced collagen synthesis by hVFFs (P<0.05) and the production of hyaluronic acids increased at 72 hours post-treatment (P<0.05). The expressions of HAS-2, tropoelastin, MMP-1, HGF, and c-Met mRNA were significantly increased by GM-CSF, although at different time points (P<0.05).

Conclusion

The present study shows that GM-CSF offers therapeutic potential for the remodeling of VF wounds and the promotion of VF regeneration.  相似文献   
5.

Background

Glaucoma is a major blinding disease characterized by progressive loss of retinal ganglion cells (RGCs) and axons. Optineurin is one of the candidate genes identified so far. A mutation of Glu50 to Lys (E50K) has been reported to be associated with a more progressive and severe disease. Optineurin, known to interact with Rab8, myosin VI and transferrin receptor (TfR), was speculated to have a role in protein trafficking. Here we determined whether, and how optineurin overexpression and E50K mutation affect the internalization of transferrin (Tf), widely used as a marker for receptor-mediated endocytosis.

Methodology/Principal Findings

Human retinal pigment epithelial (RPE) and rat RGC5 cells transfected to overexpress wild type optineurin were incubated with Texas Red-Tf to evaluate Tf uptake. Granular structures or dots referred to as foci formed in perinuclear regions after transfection. An impairment of the Tf uptake was in addition observed in transfected cells. Compared to overexpression of the wild type, E50K mutation yielded an increased foci formation and a more pronounced defect in Tf uptake. Co-transfection with TfR, but not Rab8 or myosin VI, construct rescued the optineurin inhibitory effect, suggesting that TfR was the factor involved in the trafficking phenotype. Forced expression of both wild type and E50K optineurin rendered TfR to colocalize with the foci. Surface biotinylation experiments showed that the surface level of TfR was also reduced, leading presumably to an impeded Tf uptake. A non-consequential Leu157 to Ala (L157A) mutation that displayed much reduced foci formation and TfR binding had normal TfR distribution, normal surface TfR level and normal Tf internalization.

Conclusions/Significance

The present study demonstrates that overexpression of wild type optineurin results in impairment of the Tf uptake in RPE and RGC5 cells. The phenotype is related to the optineurin interaction with TfR. Our results further indicate that E50K induces more dramatic effects than the wild type optineurin, and is thus a gain-of-function mutation. The defective protein trafficking may be one of the underlying bases why glaucoma pathology develops in patients with E50K mutation.  相似文献   
6.
Processing of optineurin in neuronal cells   总被引:1,自引:0,他引:1  
Optineurin is a gene linked to amyotrophic lateral sclerosis, Paget disease of bone, and glaucoma, a major blinding disease. Mutations such as E50K were identified in glaucoma patients. We investigated herein the involvement of ubiquitin-proteasome pathway (UPP) and autophagy, two major routes for protein clearance, in processing of optineurin in a retinal ganglion cell model line RGC5 and neuronal PC12 cells. It was found that the endogenous optineurin level in neuronal cells was increased by treatment of proteasomal inhibitor but not by autophagic and lysosomal inhibitors. Multiple bands immunoreactive to anti-ubiquitin were seen in the optineurin pulldown, indicating that optineurin was ubiquitinated. In cells overexpressing wild type and E50K optineurin, the level of the proteasome regulatory β5 subunit (PSMB5, indicative of proteasome activity) was reduced, whereas that for autophagy marker microtubule-associated protein 1 light chain 3 was enhanced compared with controls. Autophagosome formation was detected by electron microscopy. The foci formed after optineurin transfection were increased upon treatment of an autophagic inhibitor but were decreased by treatment of an inducer, rapamycin. Moreover, the level of optineurin-triggered apoptosis was reduced by rapamycin. This study thus provides compelling evidence that in a normal homeostatic situation, the turnover of endogenous optineurin involves mainly UPP. When optineurin is up-regulated or mutated, the UPP function is compromised, and autophagy comes into play. A decreased PSMB5 level and an induced autophagy were also demonstrated in vivo in retinal ganglion cells of E50K transgenic mice, validating and making relevant the in vitro findings.  相似文献   
7.
The influences of impeller types on morphology and protein expression were investigated in a submerged culture ofAspergillus oryzae. The impeller types strongly affected mycelial morphology and protein production in batch and fed-batch fermentations. Cells that were cultured by propeller agitation grew in the form of a pellet, whereas cells that were cultured by turbine agitation grew in a freely dispersed-hyphal manner and in a clumped form. Pellet-grown cells showed high levels of protein production for both the intracellular heterologous protein (β-glucuronidase) and the extracellularly homologous protein (α-amylase). The feeding mode of the carbon source also influenced the morphological distribution and protein expression in fed-batch fermentation ofA. oryzae. Pulsed-feeding mainly showed high protein expression and homogeneous distribution of pellet whereas continuous feeding resulted in less protein expression and heterogeneous distribution with pellet and dispersed-hyphae. The pellet growth with propeller agitation paralleling with the pulsed-feeding of carbon source showed a high level of protein production in the submerged fed-batch fermentation of recombinantA. oryzae.  相似文献   
8.

Background and Purpose

This study was conducted to determine whether a secretome from mesenchymal stem cells (MSC) modulated by hypoxic conditions to contain therapeutic factors contributes to salivary gland (SG) tissue remodeling and has the potential to improve irradiation (IR)-induced salivary hypofunction in a mouse model.

Materials and Methods

Human adipose mesenchymal stem cells (hAdMSC) were isolated, expanded, and exposed to hypoxic conditions (O2 < 5%). The hypoxia-conditioned medium was then filtered to a high molecular weight fraction and prepared as a hAdMSC secretome. The hAdMSC secretome was subsequently infused into the tail vein of C3H mice immediately after local IR once a day for seven consecutive days. The control group received equal volume (500 μL) of vehicle (PBS) only. SG function and structural tissue remodeling by the hAdMSC secretome were investigated. Human parotid epithelial cells (HPEC) were obtained, expanded in vitro, and then irradiated and treated with either the hypoxia-conditioned medium or a normoxic control medium. Cell proliferation and IR-induced cell death were examined to determine the mechanism by which the hAdMSC secretome exerted its effects.

Results

The conditioned hAdMSC secretome contained high levels of GM-CSF, VEGF, IL-6, and IGF-1. Repeated systemic infusion with the hAdMSC secretome resulted in improved salivation capacity and increased levels of salivary proteins, including amylase and EGF, relative to the PBS group. The microscopic structural integrity of SG was maintained and salivary epithelial (AQP-5), endothelial (CD31), myoepithelial (α-SMA) and SG progenitor cells (c-Kit) were successfully protected from radiation damage and remodeled. The hAdMSC secretome strongly induced proliferation of HPEC and led to a significant decrease in cell death in vivo and in vitro. Moreover, the anti-apoptotic effects of the hAdMSC secretome were found to be promoted after hypoxia-preconditioning relative to normoxia-cultured hAdMSC secretome.

Conclusion

These results show that the hAdMSC secretome from hypoxic-conditioned medium may provide radioprotection and tissue remodeling via release of paracrine mediators.  相似文献   
9.
10.
Bone marrow-derived mesenchymal stem cells (BM-MSCs) are often recruited to solid tumors, integrate into the tumor stroma, and contribute to tumor development. TNFα is a major inflammatory cytokine present in the tumor microenvironment and has a profound influence on the progression of tumor development. This study was aimed to investigate the role of BM-MSCs in tumor promotion in response to TNFα. Quantitative real-time PCR arrays show that diverse cytokines/chemokines were induced in TNFα-treated BM-MSCs; in particular, CXCR3 ligand chemokines, including CXCL9, CXCL10, and CXCL11, were potently induced. A serial and site-directed mutation analysis in the CXCL9, CXCL10, and CXCL11 promoters revealed that NF-κB binding elements were responsible for TNFα-induced promoter activation of CXCR3 ligand chemokines. TNFα stimulated NF-κB activity, and ectopic expression of NF-κB enhanced TNFα-induced promoter activities of the CXCR3 ligand chemokines. Gel shift and supershift assays showed that NF-κB was associated with CXCR3 ligand chemokine promoters in response to TNFα treatment. All three CXCR3 ligand chemokines enhanced the migration and invasive motility of MDA-MB-231 breast cancer cells expressing CXCR3. Treatment of MDA-MB-231 cells with CXCL10 activated small GTPase of Rho family proteins, such as RhoA and Cdc42. CXCL9-, CXCL10-, or CXCL11-induced invasive capability of MDA-MB-231 cells was completely abrogated in the presence of a neutralizing anti-CXCR3 antibody in the culture medium. Moreover, CXCL9, CXCL10, and CXCL11 stimulated the expression of MMP-9, but not MMP-2, in MDA-MB-231 cells. These results suggest that BM-MSCs promote the locomotion of breast cancer cells through CXCR3 ligand-mediated actin rearrangement by TNFα in the tumor microenvironment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号