首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9467篇
  免费   716篇
  国内免费   15篇
  2024年   11篇
  2023年   39篇
  2022年   148篇
  2021年   197篇
  2020年   148篇
  2019年   188篇
  2018年   287篇
  2017年   221篇
  2016年   377篇
  2015年   608篇
  2014年   614篇
  2013年   661篇
  2012年   891篇
  2011年   776篇
  2010年   468篇
  2009年   433篇
  2008年   612篇
  2007年   565篇
  2006年   483篇
  2005年   415篇
  2004年   407篇
  2003年   349篇
  2002年   294篇
  2001年   166篇
  2000年   139篇
  1999年   124篇
  1998年   63篇
  1997年   50篇
  1996年   26篇
  1995年   25篇
  1994年   22篇
  1993年   17篇
  1992年   34篇
  1991年   35篇
  1990年   20篇
  1989年   30篇
  1988年   27篇
  1987年   26篇
  1986年   23篇
  1985年   18篇
  1984年   17篇
  1983年   11篇
  1982年   14篇
  1981年   13篇
  1980年   13篇
  1979年   13篇
  1977年   8篇
  1975年   14篇
  1974年   10篇
  1973年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In the present study, non‐thermal dielectric barrier discharge (DBD) plasma of induced structural changes of morin resulted in the isolation of one previously undescribed benzofuranone derivative, along with two known compounds. The chemical structures of these degradation products were elucidated by UV, NMR and FAB‐MS spectroscopic analyses. The isolated three compounds showed potent antioxidative activities in two different tests, with IC50 values in the range of 12.9–41.8 μm in the 2,2′‐azino‐bis (3‐ethylbenzothiazoline‐6‐sulfonic acid) (ABTS+) radical scavenging activity, 19.0–71.9 μm for hydroxyl radical scavenging activity test. Furthermore, the new methoxylated benzofuranone exhibited enhancement of inhibitory effects against pancreatic lipase with an IC50 value of 90.7±1.6 μm , when compared to the parent morin. These results suggested that the degradation products isolated from plasma exposed morin might be beneficial for prevention of obesity and related diseases.  相似文献   
2.
Lactic acid produced from the cells is a potential cause of extra- and intracellular acidification. Due to scarce technical tools, lactic acid that leads to acidification could not be reduced and direct evidence of the relationship between metabolic lactate and apoptosis has not yet been elucidated. In this study, we designed a cellular pH regulation system in CHO cells by a reduction of lactate dehydrogenase (LDH) activity through LDH antisense mRNA expression. This inhibited lactate production and, therefore, acidification of the cytosol. Under HCO3(-)-buffered growth conditions, both the parent CHO cells and the engineered CHO cells maintained their extracellular pH and intracellular pH fairly well. However, upon acidification of the cytosol, only the parent CHO cells underwent apoptosis under HCO3(-)-free conditions. In fact, we observed a number of apoptosis-related events only in control cells, including mitochondrial dysfunction, cytochrome c release, and an increase in caspase-3 enzymatic activity.  相似文献   
3.
DNA topoisomerase I (Top1p) catalyzes topological changes in DNA and is the cellular target of the antitumor agent camptothecin (CPT). Non-CPT drugs that target Top1p, such as indolocarbazoles, are under clinical development. However, whether the cytotoxicity of indolocarbazoles derives from Top1p poisoning remains unclear. To further investigate indolocarbazole mechanism, rebeccamycin R-3 activity was examined in vitro and in yeast. Using a series of Top1p mutants, where substitution of residues around the active site tyrosine has well-defined effects on enzyme catalysis, we show that catalytically active, CPT-resistant enzymes remain sensitive to R-3. This indolocarbazole did not inhibit yeast Top1p activity, yet was effective in stabilizing Top1p-DNA complexes. Similar results were obtained with human Top1p, when Ser or His were substituted for Asn-722. The mutations altered enzyme function and sensitivity to CPT, yet R-3 poisoning of Top1p was unaffected. Moreover, top1delta, rad52delta yeast cells expressing human Top1p, but not catalytically inactive Top1Y723Fp, were sensitive to R-3. These data support hTop1p as the cellular target of R-3 and indicate that distinct drug-enzyme interactions at the active site are required for efficient poisoning by R-3 or CPT. Furthermore, resistance to one poison may potentiate cell sensitivity to structurally distinct compounds that also target Top1p.  相似文献   
4.
5.
Sialidases are key virulence factors that remove sialic acid from the host cell surface glycan, unmasking receptors that facilitate bacterial adherence and colonisation. In this study, we developed potential agents for treating bacterial infections caused by Streptococcus pneumoniae Nan A that inhibit bacterial sialidase using Turmeric and curcumin analogues. Design, synthesis, and structure analysis relationship (SAR) studies have been also described. Evaluation of the synthesised derivatives demonstrated that compound 5e was the most potent inhibitor of S. pneumoniae sialidase (IC50?=?0.2?±?0.1?µM). This compound exhibited a 3.0-fold improvement in inhibitory activity over that of curcumin and displayed competitive inhibition. These results warrant further studies confirming the antipneumococcal activity 5e and indicated that curcumin derivatives could be potentially used to treat sepsis by bacterial infections.  相似文献   
6.
Advanced hepatic fibrosis therapy using drug-delivering nanoparticles is a relatively unexplored area. Angiotensin type 1 (AT1) receptor blockers such as losartan can be delivered to hepatic stellate cells (HSC), blocking their activation and thereby reducing fibrosis progression in the liver. In our study, we analyzed the possibility of utilizing drug-loaded vehicles such as hyaluronic acid (HA) micelles carrying losartan to attenuate HSC activation. Losartan, which exhibits inherent lipophilicity, was loaded into the hydrophobic core of HA micelles with a 19.5% drug loading efficiency. An advanced liver fibrosis model was developed using C3H/HeN mice subjected to 20 weeks of prolonged TAA/ethanol weight-adapted treatment. The cytocompatibility and cell uptake profile of losartan-HA micelles were studied in murine fibroblast cells (NIH3T3), human hepatic stellate cells (hHSC) and FL83B cells (hepatocyte cell line). The ability of these nanoparticles to attenuate HSC activation was studied in activated HSC cells based on alpha smooth muscle actin (α-sma) expression. Mice treated with oral losartan or losartan-HA micelles were analyzed for serum enzyme levels (ALT/AST, CK and LDH) and collagen deposition (hydroxyproline levels) in the liver. The accumulation of HA micelles was observed in fibrotic livers, which suggests increased delivery of losartan compared to normal livers and specific uptake by HSC. Active reduction of α-sma was observed in hHSC and the liver sections of losartan-HA micelle-treated mice. The serum enzyme levels and collagen deposition of losartan-HA micelle-treated mice was reduced significantly compared to the oral losartan group. Losartan-HA micelles demonstrated significant attenuation of hepatic fibrosis via an HSC-targeting mechanism in our in vitro and in vivo studies. These nanoparticles can be considered as an alternative therapy for liver fibrosis.  相似文献   
7.
Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+) levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain) in a dose-dependent manner. Phosphorylated FAK (p-FAK) was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer.  相似文献   
8.
9.
10.
A full-length human phenylalanine hydroxylase cDNA has been recombined with a prokaryotic expression vector and introduced into Escherichia coli. Transformed bacteria express phenylalanine hydroxylase immunoreactive protein and pterin-dependent conversion of phenylalanine to tyrosine. Recombinant human phenylalanine hydroxylase produced in E. coli has been partially purified, and biochemical studies have been performed comparing the activity and kinetics of the recombinant enzyme with native phenylalanine hydroxylase from human liver. The optimal reaction conditions, kinetic constants, and sensitivity to inhibition by aromatic amino acids are the same for recombinant phenylalanine hydroxylase and native phenylalanine hydroxylase. These data indicate that the recombinant human phenylalanine hydroxylase is an authentic and complete phenylalanine hydroxylase enzyme and that the characteristic aspects of phenylalanine hydroxylase enzymatic activity are determined by a single gene product and can be constituted in the absence of any specific accessory functions of the eukaryotic cell. The availability of recombinant human phenylalanine hydroxylase produced in E. coli will expedite physical and chemical characterization of human phenylalanine hydroxylase which has been hindered in the past by inavailability of the native enzyme for study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号