首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20509篇
  免费   1628篇
  国内免费   1580篇
  2024年   30篇
  2023年   210篇
  2022年   629篇
  2021年   1054篇
  2020年   702篇
  2019年   834篇
  2018年   812篇
  2017年   576篇
  2016年   830篇
  2015年   1266篇
  2014年   1490篇
  2013年   1597篇
  2012年   1916篇
  2011年   1701篇
  2010年   1030篇
  2009年   944篇
  2008年   1081篇
  2007年   994篇
  2006年   898篇
  2005年   825篇
  2004年   632篇
  2003年   604篇
  2002年   484篇
  2001年   320篇
  2000年   290篇
  1999年   297篇
  1998年   187篇
  1997年   176篇
  1996年   191篇
  1995年   153篇
  1994年   163篇
  1993年   104篇
  1992年   120篇
  1991年   114篇
  1990年   84篇
  1989年   78篇
  1988年   52篇
  1987年   60篇
  1986年   40篇
  1985年   30篇
  1984年   40篇
  1983年   23篇
  1982年   16篇
  1981年   13篇
  1980年   4篇
  1976年   5篇
  1975年   4篇
  1974年   2篇
  1973年   3篇
  1968年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Previously, we confirmed that sphingosine kinase 1 (SphK1) inhibition improves sepsis-associated liver injury. High-mobility group box 1 (HMGB1) translocation participates in the development of acute liver failure. However, little information is available on the association between SphK1 and HMGB1 translocation during sepsis-associated liver injury. In the present study, we aimed to explore the effect of SphK1 inhibition on HMGB1 translocation and the underlying mechanism during sepsis-associated liver injury. Primary Kupffer cells and hepatocytes were isolated from SD rats. The rat model of sepsis-associated liver damage was induced by intraperitoneal injection with lipopolysaccharide (LPS). We confirmed that Kupffer cells were the cells primarily secreting HMGB1 in the liver after LPS stimulation. LPS-mediated HMGB1 expression, intracellular translocation, and acetylation were dramatically decreased by SphK1 inhibition. Nuclear histone deacetyltransferase 4 (HDAC4) translocation and E1A-associated protein p300 (p300) expression regulating the acetylation of HMGB1 were also suppressed by SphK1 inhibition. HDAC4 intracellular translocation has been reported to be controlled by the phosphorylation of HDAC4. The phosphorylation of HDAC4 is modulated by CaMKII-δ. However, these changes were completely blocked by SphK1 inhibition. Additionally, by performing coimmunoprecipitation and pull-down assays, we revealed that SphK1 can directly interact with CaMKII-δ. The colocalization of SphK1 and CaMKII-δ was verified in human liver tissues with sepsis-associated liver injury. In conclusion, SphK1 inhibition diminishes HMGB1 intracellular translocation in sepsis-associated liver injury. The mechanism is associated with the direct interaction of SphK1 and CaMKII-δ.Subject terms: Hepatotoxicity, Sepsis  相似文献   
3.
4.
5.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
6.
Molecular dynamics (MD) simulations of phosphatidylinositol (4,5)-bisphosphate (PIP2) and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in 1-palmitoyl 2-oleoyl phosphatidylcholine (POPC) bilayers indicate that the inositol rings are tilted ∼40° with respect to the bilayer surface, as compared with 17° for the P-N vector of POPC. Multiple minima were obtained for the ring twist (analogous to roll for an airplane). The phosphates at position 1 of PIP2 and PIP3 are within an Ångström of the plane formed by the phosphates of POPC; lipids in the surrounding shell are depressed by 0.5-0.8 Å, but otherwise the phosphoinositides do not substantially perturb the bilayer. Finite size artifacts for ion distributions are apparent for systems of ∼26 waters/lipid, but, based on simulations with a fourfold increase of the aqueous phase, the phosphoinositide positions and orientations do not show significant size effects. Electrostatic potentials evaluated from Poisson-Boltzmann (PB) calculations show a strong dependence of potential height and ring orientation, with the maxima on the −25 mV surfaces (17.1 ± 0.1 Å for PIP2 and 19.4 ± 0.3 Å for PIP3) occurring near the most populated orientations from MD. These surfaces are well above the background height of 10 Å estimated for negatively charged cell membranes, as would be expected for lipids involved in cellular signaling. PB calculations on microscopically flat bilayers yield similar maxima as the MD-based (microscopically rough) systems, but show less fine structure and do not clearly indicate the most probable regions. Electrostatic free energies of interaction with pentalysine are also similar for the rough and flat systems. These results support the utility of a rigid/flat bilayer model for PB-based studies of PIP2 and PIP3 as long as the orientations are judiciously chosen.  相似文献   
7.
8.
Realistic power calculations for large cohort studies and nested case control studies are essential for successfully answering important and complex research questions in epidemiology and clinical medicine. For this, we provide a methodical framework for general realistic power calculations via simulations that we put into practice by means of an R‐based template. We consider staggered recruitment and individual hazard rates, competing risks, interaction effects, and the misclassification of covariates. The study cohort is assembled with respect to given age‐, gender‐, and community distributions. Nested case‐control analyses with a varying number of controls enable comparisons of power with a full cohort analysis. Time‐to‐event generation under competing risks, including delayed study‐entry times, is realized on the basis of a six‐state Markov model. Incidence rates, prevalence of risk factors and prefixed hazard ratios allow for the assignment of age‐dependent transition rates given in the form of Cox models. These provide the basis for a central simulation‐algorithm, which is used for the generation of sample paths of the underlying time‐inhomogeneous Markov processes. With the inclusion of frailty terms into the Cox models the Markov property is specifically biased. An “individual Markov process given frailty” creates some unobserved heterogeneity between individuals. Different left‐truncation‐ and right‐censoring patterns call for the use of Cox models for data analysis. p‐values are recorded over repeated simulation runs to allow for the desired power calculations. For illustration, we consider scenarios with a “testing” character as well as realistic scenarios. This enables the validation of a correct implementation of theoretical concepts and concrete sample size recommendations against an actual epidemiological background, here given with possible substudy designs within the German National Cohort.  相似文献   
9.
The stereotyped pacing shown by the two Amur tigers in the Zurich Zoo was hypothesized as being caused by permanently frustrated appetitive foraging behavior. Several electrically controlled feeding boxes were installed and access to each box was possible only twice a day for 15 min at semi‐random times. The boxes had to be opened actively by the tigers. Two trials were carried out: one with solitary confinement, and one with paired confinement. During box feeding, the female's stereotyped pacing was significantly reduced from 16% (solitary confinement, conventional feeding) and 7% (paired confinement, conventional feeding) to 1% (solitary confinement) and less than 0.01% (paired confinement) of the daily observed time. The female's sleeping increased significantly in both solitary and paired confinement. The male only showed a significant reduction in stereotyped pacing behavior when kept with the female (conventional feeding: 10%; box feeding: <0.01% of the daily observed time). On days with a box‐feeding regime in paired confinement, the male spent 25% (83 min) of the observed time with active behavior at the feeding boxes. The results support the hypothesis that permanently frustrated appetitive foraging behavior causes stereotyped pacing in adult tigers. Zoo Biol 21:573–584, 2002. © 2002 Wiley‐Liss, Inc.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号