首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2006年   1篇
  1999年   1篇
  1989年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Previous studies have rarely examined how temporal dynamic patterns, event-related coherence, and phase-locking are related to each other. This study assessed reaction-time-sorted spectral perturbation and event-related spectral perturbation in order to examine the temporal dynamic patterns in the frontal midline (F), central parietal (CP), and occipital (O) regions during a chemistry working memory task at theta, alpha, and beta frequencies. Furthermore, the functional connectivity between F-CP, CP-O, and F-O were assessed by component event-related coherence (ERCoh) and component phase-locking (PL) at different frequency bands. In addition, this study examined whether the temporal dynamic patterns are consistent with the functional connectivity patterns across different frequencies and time courses. Component ERCoh/PL measured the interactions between different independent components decomposed from the scalp EEG, mixtures of time courses of activities arising from different brain, and artifactual sources. The results indicate that the O and CP regions’ temporal dynamic patterns are similar to each other. Furthermore, pronounced component ERCoh/PL patterns were found to exist between the O and CP regions across each stimulus and probe presentation, in both theta and alpha frequencies. The consistent theta component ERCoh/PL between the F and O regions was found at the first stimulus and after probe presentation. These findings demonstrate that temporal dynamic patterns at different regions are in accordance with the functional connectivity patterns. Such coordinated and robust EEG temporal dynamics and component ERCoh/PL patterns suggest that these brain regions’ neurons work together both to induce similar event-related spectral perturbation and to synchronize or desynchronize simultaneously in order to swiftly accomplish a particular goal. The possible mechanisms for such distinct component phase-locking and coherence patterns were also further discussed.  相似文献   
2.
Maintaining homeostatic Ca2+ signaling is a fundamental physiological process in living cells. Ca2+ sparks are the elementary units of Ca2+ signaling in the striated muscle fibers that appear as highly localized Ca2+ release events mediated by ryanodine receptor (RyR) Ca2+ release channels on the sarcoplasmic reticulum (SR) membrane. Proper assessment of muscle Ca2+ sparks could provide information on the intracellular Ca2+ handling properties of healthy and diseased striated muscles. Although Ca2+ sparks events are commonly seen in resting cardiomyocytes, they are rarely observed in resting skeletal muscle fibers; thus there is a need for methods to generate and analyze sparks in skeletal muscle fibers.Detailed here is an experimental protocol for measuring Ca2+ sparks in isolated flexor digitorm brevis (FDB) muscle fibers using fluorescent Ca2+ indictors and laser scanning confocal microscopy. In this approach, isolated FDB fibers are exposed to transient hypoosmotic stress followed by a return to isotonic physiological solution. Under these conditions, a robust Ca2+ sparks response is detected adjacent to the sarcolemmal membrane in young healthy FDB muscle fibers. Altered Ca2+ sparks response is detected in dystrophic or aged skeletal muscle fibers. This approach has recently demonstrated that membrane-delimited signaling involving cross-talk between inositol (1,4,5)-triphosphate receptor (IP3R) and RyR contributes to Ca2+ spark activation in skeletal muscle. In summary, our studies using osmotic stress induced Ca2+ sparks showed that this intracellular response reflects a muscle signaling mechanism in physiology and aging/disease states, including mouse models of muscle dystrophy (mdx mice) or amyotrophic lateral sclerosis (ALS model).  相似文献   
3.
Piscidin-1, a 22-residue cationic peptide isolated from mast cells of a hybrid striped bass, has potent antimicrobial activities against both gram-positive and -negative bacteria. To date, there is no report of its antitumor activity on any tumor cell lines. In this study, we examined the antitumor activity of a synthetic piscidin-1 peptide against several human cancer cell lines using an MTS assay and soft-agar colony-formation assay. We found that a low dose of piscidin induces both apoptosis and necrosis in HT1080 cells, as shown by annexin-V/propidium iodide and acridine orange/ethidium bromide staining, and triggers a necrotic cell death pathway in a short period with high-dose treatment. The destruction of cell membranes by piscidin-1 was demonstrated by transmission electron microscopy. Furthermore, piscidin-1 also inhibits the migration of HT1080 cells in a dose-dependent manner. This study provides the first evidence of the anticancer activity of the antimicrobial peptide, piscidin-1, with potential implications for the treatment of cancer.  相似文献   
4.
In glomerular immune injury, the inducible isoform of nitric oxide synthase (iNOS) becomes a major catalyst of NO production. Although iNOS-catalyzed NO production is sustained and can be cytotoxic, iNOS inhibition exacerbates the magnitude of proteinuria that accompanies immune injury. To investigate putative mechanisms of this effect, we assessed changes in glomerular permeability to albumin by using the following two approaches: (i) an in vivo rat model of glomerular immune injury induced by antibody against the glomerular basement membrane (GBM), in which urine albumin excretion was measured under conditions of iNOS inhibition, and (ii) an ex vivo model of isolated rat glomeruli, in which changes in glomerular capillary permeability to albumin were assessed under conditions of NOS inhibition. In rats with anti-GBM antibody-induced glomerular injury, there was an increase in urine albumin excretion. Treatment with two structurally dissimilar iNOS inhibitors at doses sufficient to decrease urine nitrate and/or nitrite exacerbated proteinuria. In these animals, urine excretion of the isoprostane 8-iso-PGF2alpha (marker of oxidative stress) was increased. In isolated glomeruli incubated with the NOS inhibitor L-NMMA, the permeability to albumin increased. This effect was reversed by the NO donor DETA NONOate and by the superoxide dismutase mimetic Tempol. We conclude that NOS-catalyzed NO production is an important mechanism in regulating glomerular permeability to protein. This mechanism involves control of the bioavailability of superoxide.  相似文献   
5.
P Duann  M Sun  C T Lin  H Zhang    L F Liu 《Nucleic acids research》1999,27(14):2905-2911
The state of cellular chromatin in response to DNA damage has been examined by monitoring the change in the linking number of circular episomes. COS cells transfected with an SV40-based vector were treated with camptothecin (CPT), a eukaryotic DNA topoisomerase I (TOP1) poison which induces TOP1-mediated DNA damage. Within minutes, a large increase in the linking number (over 10 linking number) of a small fraction (5-15%) of the episomal DNA was observed. A similar CPT-induced increase in plasmid DNA linking number was observed in Saccharomyces cerevisae expressing human DNA TOP1. In this case, the majority of the plasmid DNA can undergo rapid relaxation. The large increase in the plasmid linking number suggests major chromatin structural reorganization in response to TOP I-mediated DNA damage.  相似文献   
6.
Immunohistochemical techniques were employed to study the distribution of serotonin (5-HT) immunoreactive neurons in the brainstem of the hamster, guinea pig, rabbit and rat. 5-HT neurons were principally found to be concentrated in the midline raphe nuclei, particularly, the raphe pallidus, raphe obscurus, raphe magnus, raphe median, raphe pontis and raphe dorsalis nuclei. Characteristically, these cell bodies are displayed in bands or wing-like patterns which extend laterally from the raphe into reticular formations. The formations often appear to blend with the catecholamine system. They are particularly evident in the brainstems of the rabbit and hamster which contain wider and more lateral extensions of the serotonergic (5-HT) neurons than those observed in the brainstems of the rat and guinea pig. The widespread distribution of 5-HT immunoreacted cell bodies in the brainstem shows that there are significant prospects of 5-HT in neuronal activities.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号