首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   31篇
  155篇
  2022年   4篇
  2021年   3篇
  2020年   8篇
  2019年   8篇
  2018年   9篇
  2017年   13篇
  2016年   8篇
  2015年   14篇
  2014年   13篇
  2013年   14篇
  2012年   16篇
  2011年   11篇
  2010年   9篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2002年   6篇
  2001年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1982年   1篇
排序方式: 共有155条查询结果,搜索用时 15 毫秒
1.
Alzheimer’s disease (AD) is characterized by the appearance of amyloid‐β plaques, neurofibrillary tangles, and inflammation in brain regions involved in memory. Using mass spectrometry, we have quantified the phosphoproteome of the CK‐p25, 5XFAD, and Tau P301S mouse models of neurodegeneration. We identified a shared response involving Siglec‐F which was upregulated on a subset of reactive microglia. The human paralog Siglec‐8 was also upregulated on microglia in AD. Siglec‐F and Siglec‐8 were upregulated following microglial activation with interferon gamma (IFNγ) in BV‐2 cell line and human stem cell‐derived microglia models. Siglec‐F overexpression activates an endocytic and pyroptotic inflammatory response in BV‐2 cells, dependent on its sialic acid substrates and immunoreceptor tyrosine‐based inhibition motif (ITIM) phosphorylation sites. Related human Siglecs induced a similar response in BV‐2 cells. Collectively, our results point to an important role for mouse Siglec‐F and human Siglec‐8 in regulating microglial activation during neurodegeneration.  相似文献   
2.
Hutchinson–Gilford progeria syndrome (HGPS) is caused by the accumulation of mutant prelamin A (progerin) in the nuclear lamina, resulting in increased nuclear stiffness and abnormal nuclear architecture. Nuclear mechanics are tightly coupled to cytoskeletal mechanics via lamin A/C. However, the role of cytoskeletal/nuclear mechanical properties in mediating cellular senescence and the relationship between cytoskeletal stiffness, nuclear abnormalities, and senescent phenotypes remain largely unknown. Here, using muscle‐derived mesenchymal stromal/stem cells (MSCs) from the Zmpste24?/? (Z24?/?) mouse (a model for HGPS) and human HGPS fibroblasts, we investigated the mechanical mechanism of progerin‐induced cellular senescence, involving the role and interaction of mechanical sensors RhoA and Sun1/2 in regulating F‐actin cytoskeleton stiffness, nuclear blebbing, micronuclei formation, and the innate immune response. We observed that increased cytoskeletal stiffness and RhoA activation in progeria cells were directly coupled with increased nuclear blebbing, Sun2 expression, and micronuclei‐induced cGAS‐Sting activation, part of the innate immune response. Expression of constitutively active RhoA promoted, while the inhibition of RhoA/ROCK reduced cytoskeletal stiffness, Sun2 expression, the innate immune response, and cellular senescence. Silencing of Sun2 expression by siRNA also repressed RhoA activation, cytoskeletal stiffness and cellular senescence. Treatment of Zmpste24?/? mice with a RhoA inhibitor repressed cellular senescence and improved muscle regeneration. These results reveal novel mechanical roles and correlation of cytoskeletal/nuclear stiffness, RhoA, Sun2, and the innate immune response in promoting aging and cellular senescence in HGPS progeria.  相似文献   
3.
4.

Background

Schizophrenia is a highly heritable disease with a polygenic mode of inheritance. Many studies have contributed to our understanding of the genetic underpinnings of schizophrenia, but little is known about how interactions among genes affect the risk of schizophrenia. This study aimed to assess the associations and interactions among genes that confer vulnerability to schizophrenia and to examine the moderating effect of neuropsychological impairment.

Methods

We analyzed 99 SNPs from 10 candidate genes in 1,512 subject samples. The permutation-based single-locus, multi-locus association tests, and a gene-based multifactorial dimension reduction procedure were used to examine genetic associations and interactions to schizophrenia.

Results

We found that no single SNP was significantly associated with schizophrenia. However, a risk haplotype, namely A-T-C of the SNP triplet rsDAO7-rsDAO8-rsDAO13 of the DAO gene, was strongly associated with schizophrenia. Interaction analyses identified multiple between-gene and within-gene interactions. Between-gene interactions including DAO*DISC1 , DAO*NRG1 and DAO*RASD2 and a within-gene interaction for CACNG2 were found among schizophrenia subjects with severe sustained attention deficits, suggesting a modifying effect of impaired neuropsychological functioning. Other interactions such as the within-gene interaction of DAO and the between-gene interaction of DAO and PTK2B were consistently identified regardless of stratification by neuropsychological dysfunction. Importantly, except for the within-gene interaction of CACNG2, all of the identified risk haplotypes and interactions involved SNPs from DAO.

Conclusions

These results suggest that DAO, which is involved in the N-methyl-d-aspartate receptor regulation, signaling and glutamate metabolism, is the master gene of the genetic associations and interactions underlying schizophrenia. Besides, the interaction between DAO and RASD2 has provided an insight in integrating the glutamate and dopamine hypotheses of schizophrenia.  相似文献   
5.
Plasmonics - Surface plasmon (SP) coupling behaviors of an InGaN/GaN quantum well (QW) with surface plasmon polariton (SPP) induced on a smooth Ag-film/GaN interface and localized surface plasmon...  相似文献   
6.
Self‐assembled vertical heterostructure with a high interface‐to‐volume ratio offers tremendous opportunities to realize intriguing properties and advanced modulation of functionalities. Here, a heterostructure composed of two visible‐light photocatalysts, BiFeO3 (BFO) and ε‐Fe2O3 (ε‐FO), is designed to investigate its photoelectrochemical performance. The structural characterization of the BFO‐FO heterostructures confirms the phase separation with BFO nanopillars embedded in the ε‐FO matrix. The investigation of band structure of the heterojunction suggests the assistance of photoexcited carrier separation, leading to an enhanced photoelectrochemical performance. The insights into the charge separation are further revealed by means of ultrafast dynamics and electrochemical impedance spectroscopies. This work shows a delicate design of the self‐assembled vertical heteroepitaxy by taking advantage of the intimate contact between two phases that can lead to a tunable charge interaction, providing a new configuration for the optimization of photoelectrochemical cell.  相似文献   
7.
Discoidin domain receptor 2 (DDR2) is an unusual receptor tyrosine kinase in that its ligand is fibrillar collagen rather than a growth factor-like peptide. We examined signal transduction pathways of DDR2. Here we show that DDR2 is also unusual in that it requires Src activity to be maximally tyrosine-phosphorylated, and that Src activity also promotes association of DDR2 with Shc. The interaction with Shc involves a portion of Shc not previously implicated in interaction with receptor tyrosine kinases. These results identify Src kinase and the adaptor protein Shc as key signaling intermediates in DDR2 signal transduction. Furthermore, Src is required for DDR2-mediated transactivation of the matrix metalloproteinase-2 promoter. The data support a model in which Src and the DDR2 receptor cooperate in a regulated fashion to direct the phosphorylation of both the receptor and its targets.  相似文献   
8.
9.
10.
Feeding behavior and plant response to feeding were studied for the aphid Aphis gossypii Glover on susceptible and resistant melons(cv.Iroquois and TGR-1551,respectively).Average phloem phase bout duration on TGR-1551 was<7% of the duration on Iroquois.Sixty-seven percent of aphids on TGR-1551 never produced a phloem phase that attained ingestion(EPG waveform E2)in contrast to only 7% of aphids on Iroquois.Average bout duration of waveform E2(scored as zero if phloem phase did not attain E2)on TGR-1551 was<3% of the duration on Iroquois.Conversely,average bout duration of EPG waveform El(sieve element salivation)was 2.8 times greater on TGR-1551 than on Iroquois.In a second experiment,liquid nitrogen was used to rapidly cryofix leaves and aphids within a few minutes after the aphids penetrated a sieve element.Phloem near the penetration site was then examined by confocal laser scanning microscopy.Ninety-six percent of penetrated sieve elements were occluded by protein in TGR-1551 in contrast to only 28% in Iroquois.Usually in TGR-1551,occlusion was also observed in nearby nonpenetrated sieve elements.Next,a calcium channel blocker,trivalent lanthanum,was used to prevent phloem occlusion in TGR-1551,and A.gossypii feeding behavior and the plants phloem response were compared between lanthanum-treated and control TGR-1551.Lanthanum treatment eliminated the sieve element protein occlusion response and the aphids readily ingested phloem sap from treated plants.This study provides strong evidence that phloem occlusion is a mechanism for resistance against A.gossypii in TGR-1551.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号