首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   794篇
  免费   58篇
  852篇
  2023年   13篇
  2022年   15篇
  2021年   26篇
  2020年   13篇
  2019年   21篇
  2018年   31篇
  2017年   29篇
  2016年   46篇
  2015年   62篇
  2014年   52篇
  2013年   69篇
  2012年   82篇
  2011年   89篇
  2010年   38篇
  2009年   26篇
  2008年   45篇
  2007年   45篇
  2006年   30篇
  2005年   37篇
  2004年   31篇
  2003年   21篇
  2002年   13篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1993年   3篇
  1987年   1篇
  1985年   1篇
  1981年   1篇
  1980年   1篇
  1975年   4篇
  1969年   1篇
排序方式: 共有852条查询结果,搜索用时 15 毫秒
1.
The aim of this study is to develop a rapid, effect-directed screening method for quality assessment of bee pollen-honey mixtures. The comparative antioxidant potential and phenolic content of honey, bee pollen, and the bee pollen-honey mixtures, was performed using spectrophotometry. The total phenolic content and antioxidative activity of bee pollen-honey mixtures with 20 % bee pollen share were in the range 3.03–3.11 mg GAE/g, and 6.02–6.96 mmol TE/kg, respectively, while mixtures with 30 % bee pollen share contained 3.92–4.18 mg GAE/g, and 9.69–10.11 mmol TE/kg. Chromatographic fingerprint of bee pollen-honey mixtures was performed by high-performance thin-layer chromatography with conditions developed by authors and reported for the first time. Fingerprint analysis hyphenated with chemometrics enabled authenticity assessments of honey in mixtures. Results indicate that bee pollen-honey mixtures represent a food with highly, both, nutritious characteristics and health-promoting effect.  相似文献   
2.
3.
Mitochondrial DNA (mtDNA) maintenance disorders are caused by mutations in ubiquitously expressed nuclear genes and lead to syndromes with variable disease severity and tissue-specific phenotypes. Loss of function mutations in the gene encoding the mitochondrial genome and maintenance exonuclease 1 (MGME1) result in deletions and depletion of mtDNA leading to adult-onset multisystem mitochondrial disease in humans. To better understand the in vivo function of MGME1 and the associated disease pathophysiology, we characterized a Mgme1 mouse knockout model by extensive phenotyping of ageing knockout animals. We show that loss of MGME1 leads to de novo formation of linear deleted mtDNA fragments that are constantly made and degraded. These findings contradict previous proposal that MGME1 is essential for degradation of linear mtDNA fragments and instead support a model where MGME1 has a critical role in completion of mtDNA replication. We report that Mgme1 knockout mice develop a dramatic phenotype as they age and display progressive weight loss, cataract and retinopathy. Surprisingly, aged animals also develop kidney inflammation, glomerular changes and severe chronic progressive nephropathy, consistent with nephrotic syndrome. These findings link the faulty mtDNA synthesis to severe inflammatory disease and thus show that defective mtDNA replication can trigger an immune response that causes age-associated progressive pathology in the kidney.  相似文献   
4.
Horse chestnut (Aesculus hyppocastanum L., Hyppocastanacea) is a relict species with a slow and complex reproductive cycle considered to have horticultural and medical importance. The cycle maybe circumvented via in vitro androgenesis. Androgenesis of horse chestnut was induced in microspores and anther culture on MS media. Some of the horse chestnut androgenic embryos were albinos. Addition of abscisic acid in media (in concentrations of 0.01, 0.1, 0.5, 1, 2, 5, 10, and 20 mg l?1) with horse chestnut androgenic embryos has circumvented the reproduction cycle barriers. The best results were achieved on medium with the lowest abscisic acid concentration (0.01 mg l?1) in microspore culture. The microspore culture proved to be a better model system for embryo production and albino embryo reduction than anther culture. Flow cytometry analysis after maturation treatments induced by ABA showed that 88 % of green embryos originating from microspore culture were haploid. However, 50 % of green embryos from anther culture were haploid. The remaining analyzed androgenic embryos, from both types of cultures were diploid.  相似文献   
5.
Ionizing radiation-induced adverse biological effects impose serious challenges to astronauts during extended space travel. Of particular concern is the radiation from highly energetic, heavy, charged particles known as HZE particles. The objective of the present study was to characterize HZE particle radiation-induced adverse biological effects and evaluate the effect of D-selenomethionine (SeM) on the HZE particle radiation-induced adverse biological effects. The results showed that HZE particle radiation can increase oxidative stress, cytotoxicity, and cell transformation in vitro, and decrease the total antioxidant status in irradiated Sprague-Dawley rats. These adverse biological effects were all preventable by treatment with SeM, suggesting that SeM is potentially useful as a countermeasure against space radiation-induced adverse effects. Treatment with SeM was shown to enhance ATR and CHK2 gene expression in cultured human thyroid epithelial cells. As ionizing radiation is known to result in DNA damage and both ATR and CHK2 gene products are involved in DNA damage, it is possible that SeM may prevent HZE particle radiation-induced adverse biological effects by enhancing the DNA repair machinery in irradiated cells.  相似文献   
6.
Members of the astacin family of metalloproteinases such as human bone morphogenetic protein 1 (BMP-1) regulate morphogenesis by processing precursors to mature functional extracellular matrix (ECM) proteins and several growth factors including TGFβ, BMP2, BMP4 and GFD8. We have recently discovered that BMP1-3 isoform of the Bmp-1 gene circulates in the human plasma and is significantly increased in patients with acute bone fracture. We hypothesized that circulating BMP1-3 might have an important role in bone repair and serve as a novel bone biomarker. When administered systemically to rats with a long bone fracture and locally to rabbits with a critical size defect of the ulna, recombinant human BMP1-3 enhanced bone healing. In contrast, neutralization of the endogenous BMP1-3 by a specific polyclonal antibody delayed the bone union. Invitro BMP1-3 increased the expression of collagen type I and osteocalcin in MC3T3-E1 osteoblast like cells, and enhanced the formation of mineralized bone nodules from bone marrow mesenchymal stem cells. We suggest that BMP1-3 is a novel systemic regulator of bone repair.  相似文献   
7.
The intracerebroventricular (icv) application of streptozotocin (STZ) in low dosage was used in 3-month-old rats to explore brain insulin system dysfunction. Three months following STZ icv treatment, the expression of insulin-1 and -2 mRNA was significantly reduced to 11% in hippocampus and to 28% in frontoparietal cerebral cortex, respectively. Insulin receptor (IR) mRNA expression decreased significantly in frontoparietal cerebral cortex and hippocampus (16% and 33% of control). At the protein/activity level, different abnormalities of protein tyrosine kinase activity (increase in hippocampus), total IR beta-subunit (decrease in hypothalamus) and phosphorylated IR tyrosine residues (increase) became apparent. The STZ-induced disturbance in learning and memory capacities was not abolished by icv application of glucose transport inhibitors known to prevent STZ-induced diabetes mellitus. The discrepancy between reduced IR gene expression and increase in both phosphorylated IR tyrosine residues/protein tyrosine kinase activity may indicate imbalance between phosphorylation/dephosphorylation of the IR beta-subunit causing its dysfunction. These abnormalities may point to a complex brain insulin system dysfunction after STZ icv application, which may lead to an increase in hyperphosphorylated tau-protein concentration. Brain insulin system dysfunction is discussed as possible pathological core in the generation of hyperphosphorylated tau protein as a morphological marker of sporadic Alzheimer's disease.  相似文献   
8.
The efficiency of protected areas (PAs) has often been questioned due to global decline of biodiversity. Invertebrates, especially insects, have been historically underrepresented in conservation studies. Our study focuses on hoverflies, an important group of insect pollinators and proven to be good bioindicators. Research was focused in Serbia, one of Europe's hotspots of hoverfly diversity, with a long tradition of hoverfly research, which provided sufficient information for achieving our aims: identifying areas of high hoverfly diversity, evaluating the efficiency of PAs and prime hoverfly areas (PHAs) in the conservation of hoverflies, determining how well they cover the distribution of hoverfly species, especially those of conservation concern, and testing the importance of the size of the area for conservation of hoverfly diversity. We applied weighting of the species to help stress the importance of species of conservation concern. The results indicated that PHAs cover the areas with high hoverfly diversity better than PA networks, especially when it comes to species of conservation concern. Generalized linear model results showed that the area size was a significant predictor of number of species in both PA and PHA. This indicates that area size is key when designating new areas important for conservation, but there are also other factors that need to be taken into account, such as habitat quality or suitability. Studies like this are useful in aiding designation of new areas important for conservation of certain species and in identifying sampling gaps, which could potentially aim future research in that direction.  相似文献   
9.
Plant and Soil - Flotation tailings represent an extremely unfriendly substrate for plant colonization due to toxic metal concentrations and marked macronutrient deficiencies. The perennial grass...  相似文献   
10.
Mutations play a key role in the development of disease in an individual and the evolution of traits within species. Recent work in humans and other primates has clarified the origins and patterns of single-nucleotide variants, showing that most arise in the father’s germline during spermatogenesis. It remains unknown whether larger mutations, such as deletions and duplications of hundreds or thousands of nucleotides, follow similar patterns. Such mutations lead to copy-number variation (CNV) within and between species, and can have profound effects by deleting or duplicating genes. Here, we analyze patterns of CNV mutations in 32 rhesus macaque individuals from 14 parent–offspring trios. We find the rate of CNV mutations per generation is low (less than one per genome) and we observe no correlation between parental age and the number of CNVs that are passed on to offspring. We also examine segregating CNVs within the rhesus macaque sample and compare them to a similar data set from humans, finding that both species have far more segregating deletions than duplications. We contrast this with long-term patterns of gene copy-number evolution between 17 mammals, where the proportion of deletions that become fixed along the macaque lineage is much smaller than the proportion of segregating deletions. These results suggest purifying selection acting on deletions, such that the majority of them are removed from the population over time. Rhesus macaques are an important biomedical model organism, so these results will aid in our understanding of this species and the disease models it supports.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号