全文获取类型
收费全文 | 1935篇 |
免费 | 151篇 |
专业分类
2086篇 |
出版年
2024年 | 9篇 |
2023年 | 9篇 |
2022年 | 13篇 |
2021年 | 20篇 |
2020年 | 19篇 |
2019年 | 19篇 |
2018年 | 31篇 |
2017年 | 27篇 |
2016年 | 34篇 |
2015年 | 86篇 |
2014年 | 80篇 |
2013年 | 93篇 |
2012年 | 117篇 |
2011年 | 133篇 |
2010年 | 94篇 |
2009年 | 70篇 |
2008年 | 115篇 |
2007年 | 128篇 |
2006年 | 106篇 |
2005年 | 117篇 |
2004年 | 117篇 |
2003年 | 100篇 |
2002年 | 117篇 |
2001年 | 36篇 |
2000年 | 24篇 |
1999年 | 26篇 |
1998年 | 21篇 |
1997年 | 17篇 |
1996年 | 14篇 |
1995年 | 16篇 |
1994年 | 16篇 |
1993年 | 17篇 |
1992年 | 16篇 |
1991年 | 13篇 |
1990年 | 12篇 |
1989年 | 19篇 |
1987年 | 15篇 |
1986年 | 16篇 |
1985年 | 9篇 |
1984年 | 15篇 |
1983年 | 8篇 |
1982年 | 9篇 |
1981年 | 8篇 |
1979年 | 10篇 |
1978年 | 8篇 |
1976年 | 8篇 |
1975年 | 8篇 |
1974年 | 6篇 |
1973年 | 8篇 |
1972年 | 15篇 |
排序方式: 共有2086条查询结果,搜索用时 15 毫秒
1.
The population dynamics of a planktonic rotifer (Polyarthra vulgaris) were examined in a brown water, acid lake in northern Michigan, U.S.A. Predation by Chaoborus punctipennis and low food (Navicula spp. and Cyclotella spp.) concentrations were the main factors limiting P. vulgaris populations of all factors examined. The data presented here support a hypothesis for zooplankton limitation by an invertebrate predator. 相似文献
2.
3.
Multidrug resistance (MDR), the ability of a cancer cell or pathogen to be resistant to a wide range of structurally and functionally unrelated anti-cancer drugs or antibiotics, is a current serious problem in public health. This multidrug resistance is largely due to energy-dependent drug efflux pumps. The pumps expel anti-cancer drugs or antibiotics into the external medium, lowering their intracellular concentration below a toxic threshold. We are studying multidrug resistance in Pseudomonas aeruginosa, an opportunistic bacterial pathogen that causes infections in patients with many types of injuries or illness, for example, burns or cystic fibrosis, and also in immuno-compromised cancer, dialysis, and transplantation patients. The major MDR efflux pumps in P. aeruginosa are tripartite complexes comprised of an inner membrane proton-drug antiporter (RND), an outer membrane channel (OMF), and a periplasmic linker protein (MFP) 1-8. The RND and OMF proteins are transmembrane proteins. Transmembrane proteins make up more than 30% of all proteins and are 65% of current drug targets. The hydrophobic transmembrane domains make the proteins insoluble in aqueous buffer. Before a transmembrane protein can be purified, it is necessary to find buffer conditions containing a mild detergent that enable the protein to be solubilized as a protein detergent complex (PDC) 9-11. In this example, we use an RND protein, the P. aeruginosa MexB transmembrane transporter, to demonstrate how to express a recombinant form of a transmembrane protein, solubilize it using detergents, and then purify the protein detergent complexes. This general method can be applied to the expression, purification, and solubilization of many other recombinantly expressed membrane proteins. The protein detergent complexes can later be used for biochemical or biophysical characterization including X-ray crystal structure determination or crosslinking studies.Download video file.(67M, mov) 相似文献
4.
Xu L Zhang L Jones R Bryant C Boddeker N Mabery E Bahador G Watson J Clough J Arimilli M Gillette W Colagiovanni D Wang K Gibbs C Kim CU 《Bioorganic & medicinal chemistry letters》2011,21(6):1670-1674
There is an urgent need for the development of novel antimicrobial agents that offer effective treatment against MRSA. Using a new class of dipeptide antibiotic TAN-1057A/B as lead, we designed, synthesized and evaluated analogs of TAN-1057A/B. Several novel dihydropyrimidinone antibiotics demonstrating comparable antibiotic efficacy while possessing favorable selectivity were identified. 相似文献
5.
Cristian Ionescu-Zanetti Lee-Ping Wang Dino Di Carlo Paul Hung Andrea Di Blas Richard Hughey Luke P Lee 《Cytometry. Part A》2005,65(2):116-123
BACKGROUND: The morphometric analysis of red blood cells (RBCs) is an important area of study and has been performed previously for fixed samples. We present a novel method for the analysis of morphologic changes of live erythrocytes as a function of time. We use this method to extract information on alkaline hemolysis fragility. Many other toxins lyse cells by membrane poration, which has been studied by averaging over cell populations. However, no quantitative data are available for changes in the morphology of individual cells during membrane poration-driven hemolysis or for the relation between cell shape and fragility. METHODS: Hydroxide, a porating agent, was generated in a microfluidic enclosure containing RBCs in suspension. Automatic cell recognition, tracking, and morphometric measurements were done by using a custom image analysis program. Cell area and circular shape factor (CSF) were measured over time for individual cells. Implementations were developed in MATLAB and on Kestrel, a parallel computer that affords higher speed that approaches real-time processing. RESULTS: The average CSF went through a first period of fast increase, corresponding to the conversion of discocytes to spherocytes under internal osmotic pressure, followed by another period of slow increase until the fast lysis event. For individual cells, the initial CSF was shown to be inversely correlated to cell lifetime (linear regression factor R=0.44), with discocytes surviving longer than spherocytes. The inflated cell surface area to volume ratio was also inversely correlated to lifetime (R=0.43) but not correlated to the CSF. Lifetime correlated best to the ratio of cell inflation volume (Vfinal-Vinitial) to surface area (R=0.65). CONCLUSIONS: RBCs inflate at a rate proportional to their surface area, in agreement with a constant flux model, and lyse after attaining a spherical morphology. Spherical RBCs display increased alkaline hemolysis fragility (shorter lifetimes), providing an explanation for the increased osmotic fragility of RBCs from patients who have spherocytosis. 相似文献
6.
Premkumar L Sawkar AR Boldin-Adamsky S Toker L Silman I Kelly JW Futerman AH Sussman JL 《The Journal of biological chemistry》2005,280(25):23815-23819
Gaucher disease is an inherited metabolic disorder caused by mutations in the lysosomal enzyme acid-beta-glucosidase (GlcCerase). We recently determined the x-ray structure of GlcCerase to 2.0 A resolution (Dvir, H., Harel, M., McCarthy, A. A., Toker, L., Silman, I., Futerman, A. H., and Sussman, J. L. (2003) EMBO Rep.4, 704-709) and have now solved the structure of Glc-Cerase conjugated with an irreversible inhibitor, conduritol-B-epoxide (CBE). The crystal structure reveals that binding of CBE to the active site does not induce a global conformational change in GlcCerase and confirms that Glu340 is the catalytic nucleophile. However, only one of two alternative conformations of a pair of flexible loops (residues 345-349 and 394-399) located at the entrance to the active site in native GlcCerase is observed in the GlcCerase-CBE structure, a conformation in which the active site is accessible to CBE. Analysis of the dynamics of these two alternative conformations suggests that the two loops act as a lid at the entrance to the active site. This possibility is supported by a cluster of mutations in loop 394-399 that cause Gaucher disease by reducing catalytic activity. Moreover, in silico mutational analysis demonstrates that all these mutations stabilize the conformation that limits access to the active site, thus providing a mechanistic explanation of how mutations in this loop result in Gaucher disease. 相似文献
7.
Jäger M Dendle M Fuller AA Kelly JW 《Protein science : a publication of the Protein Society》2007,16(10):2306-2313
Using the human Pin1 WW domain (hPin1 WW), we show that replacement of two nearest neighbor non-hydrogen-bonded residues on adjacent beta-strands with tryptophan (Trp) residues increases beta-sheet thermodynamic stability by 4.8 kJ mol(-1) at physiological temperature. One-dimensional NMR studies confirmed that introduction of the Trp-Trp pair does not globally perturb the structure of the triple-stranded beta-sheet, while circular dichroism studies suggest that the engineered cross-strand Trp-Trp pair adopts a side-chain conformation similar to that first reported for a designed \"Trp-zipper\" beta-hairpin peptide, wherein the indole side chains stack perpendicular to each other. Even though the mutated side chains in wild-type hPin1 WW are not conserved among WW domains and compose the beta-sheet surface opposite to that responsible for ligand binding, introduction of the cross-strand Trp-Trp pair effectively eliminates hPin1 WW function as assessed by the loss of binding affinity toward a natural peptide ligand. Maximizing both thermodynamic stability and the domain function of hPin1 WW by the above mentioned approach appears to be difficult, analogous to the situation with loop 1 optimization explored previously. That introduction of a non-hydrogen-bonded cross-strand Trp-Trp pair within the hPin1 WW domain eliminates function may provide a rationale for why this energetically favorable pairwise interaction has not yet been identified in WW domains or any other biologically evolved protein with known three-dimensional structure. 相似文献
8.
The mammalian heart is a dynamic organ that can grow and change to accommodate alterations in its workload. During development and in response to physiological stimuli or pathological insults, the heart undergoes hypertrophic enlargement, which is characterized by an increase in the size of individual cardiac myocytes. Recent findings in genetically modified animal models implicate important intermediate signal-transduction pathways in the coordination of heart growth following physiological and pathological stimulation. 相似文献
9.
Sytsma KJ Morawetz J Pires JC Nepokroeff M Conti E Zjhra M Hall JC Chase MW 《American journal of botany》2002,89(9):1531-1546
To address the composition of the urticalean rosids, the relationships of the component families (maximally Cannabaceae, Cecropiaceae, Celtidaceae, Moraceae, Ulmaceae, and Urticaceae) and analyze evolution of morphological characters, we analyzed sequence variation for a large sampling of these families and various rosid outgroups using rbcL, trnL-F, and ndhF plastid regions. Urticalean rosids are derived out of a lineage including Barbeyaceae, Dirachmaceae, Elaeagnaceae, and Rhamnaceae, with Rosaceae less closely related; thus, they are imbedded within Rosales. Ulmaceae are the sister to all remaining families. Cannabaceae are derived out of a subclade of Celtidaceae; this expanded family should be called Cannabaceae. Cecropiaceae are derived within Urticaceae and are polyphyletic with Poikilospermum derived elsewhere within Urticaceae; this expanded family should be called Urticaceae. Monophyletic Moraceae are sister to this expanded Urticaceae. Support for these relationships comes from a number of morphological characters (floral sexuality, presence or absence of hypanthium, stamen type and dehiscence, pollen pore number, ovule position, and embryo alignment) and chromosome numbers. Most fruit types, in terms of ecological dispersal, are derived independently multiple times and are strongly correlated with habitat. 相似文献
10.
Molecular beacons represent a new family of fluorescent probes for nucleic acids, and have found broad applications in recent years due to their unique advantages over traditional probes. Detection of nucleic acids using molecular beacons has been based on hybridization between target molecules and molecular beacons in a 1:1 stoichiometric ratio. The stoichiometric hybridization, however, puts an intrinsic limitation on detection sensitivity, because one target molecule converts only one beacon molecule to its fluorescent form. To increase the detection sensitivity, a conventional strategy has been target amplification through polymerase chain reaction. Instead of target amplification, here we introduce a scheme of signal amplification, nicking enzyme signal amplification, to increase the detection sensitivity of molecular beacons. The mechanism of the signal amplification lies in target-dependent cleavage of molecular beacons by a DNA nicking enzyme, through which one target DNA can open many beacon molecules, giving rise to amplification of fluorescent signal. Our results indicate that one target DNA leads to cleavage of hundreds of beacon molecules, increasing detection sensitivity by nearly three orders of magnitude. We designed two versions of signal amplification. The basic version, though simple, requires that nicking enzyme recognition sequence be present in the target DNA. The extended version allows detection of target of any sequence by incorporating rolling circle amplification. Moreover, the extended version provides one additional level of signal amplification, bringing the detection limit down to tens of femtomolar, nearly five orders of magnitude lower than that of conventional hybridization assay. 相似文献