首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1540篇
  免费   74篇
  国内免费   2篇
  2022年   6篇
  2021年   18篇
  2020年   5篇
  2019年   5篇
  2018年   13篇
  2017年   11篇
  2016年   22篇
  2015年   59篇
  2014年   67篇
  2013年   83篇
  2012年   91篇
  2011年   116篇
  2010年   72篇
  2009年   69篇
  2008年   100篇
  2007年   108篇
  2006年   108篇
  2005年   101篇
  2004年   97篇
  2003年   84篇
  2002年   100篇
  2001年   14篇
  2000年   20篇
  1999年   26篇
  1998年   26篇
  1997年   17篇
  1996年   18篇
  1995年   21篇
  1994年   8篇
  1993年   11篇
  1992年   9篇
  1991年   11篇
  1990年   5篇
  1989年   13篇
  1988年   7篇
  1987年   6篇
  1986年   8篇
  1985年   8篇
  1984年   7篇
  1983年   5篇
  1982年   5篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1978年   4篇
  1977年   4篇
  1976年   5篇
  1971年   2篇
  1969年   2篇
  1968年   3篇
排序方式: 共有1616条查询结果,搜索用时 15 毫秒
1.
We report here that a previously described cell surface antigen (Brower, Smith & Wilcox, 1980) is expressed in a segmentally repeating pattern of stripes in the epidermis and nervous system of segmented Drosophila embryos. We also report that the antigenic activity is found on two closely related cell surface glycoproteins. The pattern of expression of this antigen is reminiscent of the expression of some segmentation genes and is affected by mutation of at least two of these genes, fushi tarazu and paired. Thus these glycoproteins are candidates for cell surface molecules involved in carrying out the patterning processes controlled by segmentation genes.  相似文献   
2.
3.
Sensory neurons in the wing of Drosophila originate locally from epithelial cells and send their axons toward the base of the wing in two major bundles, the L1 and L3 nerves. We have estimated the birth times of a number of identified wing sensory neurons using an X-irradiation technique and have followed the appearance of their somata and axons by means of an immunohistochemical stain. These cells become immunoreactive and begin axon growth in a sequence which mirrors the sequence of their birth times. The earliest ones are born before pupariation and begin axonogenesis within 1 to 2 hr after the onset of metamorphosis; the last are born and differentiate some 12 to 14 hr later. The L1 and L3 nerves are formed in sections, with specific neurons pioneering defined stretches of the pathways during the period between 0 and 4 hr after pupariation (AP), and finally joining together around 12 hr AP. By 16 hr AP the adult complement of neurons is present and the adult peripheral nerve pattern has been established. Pathway establishment appears to be specified by multiple cues. In places where neurons differentiate in close proximity to one another, random filopodial exploration followed by axon growth to a neighboring neuron soma might be the major factor leading to pathway construction. In other locations, filopodial contact between neighboring somata does not appear to occur, and axon pathways joining neural neighbors by the most direct route are not established. We propose that in these cases additional factors, including veins which are already present at the time of axonogenesis, influence the growth of axons through non-neural tissues.  相似文献   
4.
Summary Streptomyces ambofaciens strain ATCC23877 contains the 11.1 kb plasmid pSAM2 stably integrated into its chromosome. This plasmidic sequence is able to loop out and to be transferred at high frequency to S. lividans where it is found simultaneously as both free and integrated plasmid. When a UV derivative of strain ATCC23877 (strain ATCC15154) is used, the resident copy of pSAM2 can be transferred to S. lividans, but only the integrated form is found in this strain. In both cases, the integration occurs at a unique chromosomal region through the same plasmidic integration site as that in strain ATCC23877. The resident copy of strain ATCC15154 can also be transferred at low frequency to S. ambofaciens DSM40697 (devoid of any pSAM2 sequence). In this case, as several copies of pSAM2 are integrated, the integration pattern is complicated. Integration of a complete pSAM2 sequence in this strain occurs in a region that hybridizes with the integration zones of S. lividans and of S. ambofaciens strain ATCC23877. Comparison of the cloned integration zone of S. lividans before and after the integration event showed that the restriction pattern of the resident pSAM2 in strain ATCC15154 is similar to that of the free form of pSAM2 found naturally in another UV derivative of strain ATCC23877 (strain JI3212).  相似文献   
5.
Summary Metabolism of sulfonylurea herbicides by Streptomyces griseolus ATCC 11796 is carried out via two cytochromes P-450, P-450SU1 and P-450SU2. Mutants of S. griseolus, selected by their reduced ability to metabolize a fluorescent sulfonylurea, do not synthesize cytochrome P-450SU1 when grown in the presence of sulfonylureas. Genetic evidence indicated that this phenotype was the result of a deletion of > 15 kb of DNA, including the structural genes for cytochrome P-450SU1 and an associated ferredoxin Fd-1 (suaC and suaB, respectively). In the absence of this monooxygenase system, the mutants described here respond to the presence of sulfonylureas or phenobarbital in the growth medium with the expression of only the suhC,B gene products (cytochrome P-450SU2 and Fd-2), previously observed only as minor components in wild-type cells treated with sulfonylurea. These strains have enabled an analysis of sulfonylurea metabolism mediated by cytochrome P-450SU2 in the absence of P-450SU1, yielding an in vivo delineation of the roles of the two different cytochrome P-450 systems in herbicide metabolism by S. griseolus.  相似文献   
6.
We have used RNA gel blot analysis to demonstrate the anther-specific expression of three genes in sunflower. Expression of these genes was first detected shortly before flower opening, which occurs sequentially on the sunflower inflorescence, and continues during pollination. In contrast, these genes are not expressed (or only weakly expressed) in a male-sterile line in which anther development aborts. In situ hybridization experiments showed that these genes are only expressed in the single cell layer of the sunflower anther epidermis. In the case of one of these genes, which codes for an abundant mRNA, we report the peptide sequences deduced from the sequence of two similar but non identical cDNAs. These proteins contain a potential signal peptide and are characterized by the presence of a proline-rich region which reads KPSTPAPPPPPP(PP)K. Our results also suggest that several proline-rich proteins of unknown functions are specifically synthesized during the maturation of anthers in sunflower.  相似文献   
7.
Previous attempts to study sorting out of Drosophila imaginal disc cells have been hampered by an inability to thoroughly dissociate these cells and the need to use cuticular markers which require several days of in vivo culture. This study overcomes these limitations by using a new dissociation procedure and a genetic marker for undifferentiated cells, the succinate dehydrogenase8 (sdh8) mutation. Dissociated and reaggregated cells from wing and leg imaginal discs segregated or "sorted out" from one another after only 24 hr of in vivo culture. It was also found that leg cells from different body segments may sort out, but to a lesser degree than wing and leg cells. Mixtures of wing and haltere cells did not sort out, in contrast to previous reports. These results constitute the first unambiguous study of sorting out with Drosophila imaginal disc cells and indicate that dorsally situated imaginal cells share a recognition specificity which is different from that of ventral imaginal cells.  相似文献   
8.
Summary The differentiation capacity of the rat epididymis after depletion of androgen was studied in organ culture and in castrated rats. The differentiation of narrow cells in 5- and 10-day-old explants and in 10-day-old castrated rats suggests that: (i) the testicular androgens are not essential for their differentiation, (ii) a differential androgen dependence exists among the epididymal cell types, (iii) the undifferentiated epithelial cells are the precursors of the narrow cells.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号