首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   359篇
  免费   21篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2015年   6篇
  2014年   14篇
  2013年   14篇
  2012年   26篇
  2011年   24篇
  2010年   19篇
  2009年   20篇
  2008年   23篇
  2007年   18篇
  2006年   18篇
  2005年   25篇
  2004年   17篇
  2003年   19篇
  2002年   23篇
  2001年   2篇
  2000年   2篇
  1999年   5篇
  1998年   11篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   6篇
  1993年   6篇
  1992年   6篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1988年   7篇
  1987年   4篇
  1986年   2篇
  1985年   6篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   5篇
  1978年   1篇
  1977年   2篇
  1976年   4篇
  1974年   1篇
  1971年   1篇
排序方式: 共有380条查询结果,搜索用时 46 毫秒
1.
2.
The Cad antigen is a rare erythrocyte blood group antigen expressed on both sialoglycoprotein and ganglioside structures. It is related both serologically and biochemically to the Sda blood group antigen expressed on over 90% of Caucasian erythrocytes. We reported previously that Cad erythrocytes contain a novel ganglioside that binds Helix pomatia lectin and inhibits human anti-Sda antibody. We have now purified the Cad ganglioside and determined its structure. The ganglioside contained Glc-Gal-GlcNAc-GalNAc-NeuAc in a molar ratio of 1.00:1.94:0.95:0.93:1.05. Its chromatographic mobility was between that of GM1 and GD3. After treatment with beta-hexosaminidase (human placenta Hex A), the product migrated with 2-3-sialosylparagloboside (IV3NeuAcnLc4OseCer), it no longer bound H. pomatia lectin, and it acquired the ability to bind an antibody to sialosylparagloboside. Treatment of this material with neuraminidase (Vibrio cholerae) yielded a product with the mobility of paragloboside (nLc4OseCer) that bound monoclonal antibody 1B2, which is specific for terminal N-acetyllactosaminyl structures. Treatment of the Cad ganglioside with Arthrobacter ureafaciens neuraminidase yielded a product reactive with monoclonal antibody 2D4, which is specific for terminal GalNAc beta (1-4)Gal structures. These data provide strong evidence that the Cad ganglioside structure is GalNAc beta (1-4)[NeuAc alpha (2-3)]Gal beta (1-3)Gal beta (1-4)GlcCer. 1H NMR analysis also supports the conclusion that the terminal GalNAc is linked beta (1-4) to Gal. High-performance thin-layer chromatographic ganglioside patterns from three blood group Cad individuals showed a direct correlation between the quantity of Cad ganglioside and the strength of Cad antigen expression on the erythrocytes, as measured by hemagglutination.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
3.
4.
In this study we describe the biochemical features of the Toxoplasma gondii tachyzoite surface glycoprotein, gp23, demonstrating that it is attached to the parasite membrane by a glycosyl-phosphatidyl inositol anchor. Gp23 was metabolically labeled with tritiated palmitate, myristate, ethanolamine, inositol, glucosamine, mannose and galactose, as expected for a GPI-anchor structure. Gp23 was released from the surface of living parasites after treatment with phosphatidyl inositol-specific phospholipase C (PI-PLC) and the resulting water-soluble protein was immunoprecipitated with a monoclonal antibody specific for gp23. The GPIcore glycan was generated after aqueous-HF dephosphorylation followed by nitrous acid deamination and its carbohydrate structure was analyzed using selective exo- and endoglycosidase treatments. Finally, the phosphatidylinositol moiety of gp23 was characterized using PI-PLC and phospholipase A2 (PLA2) digestions. Our cumulative data suggest that gp23 of T gondii tachyzoites contains a modified GPI-backbone similar to the mammalian Thy-1 anchor, consisting of a conserved core structure (ethanolaminePO4-6-Manαl-2-Manαl-6-Manαl-4-GIcNαl-6-PI) bearing β-linked N-acetylgalactosamine residue(s).  相似文献   
5.
Neutral glycosphingolipids were isolated from the colon of rats between birth and adulthood. The glycolipid concentration was stable during this period. Epithelial cells of the adult colon contained three times more glycolipids than the whole organ. The distribution pattern underwent only minor modifications during development. Free ceramide contributed for 23-27% of the total neutral sphingolipids at all ages. In 6-day-old rats, it was constituted of nonhydroxylated fatty acids linked to C18-sphingenine (57.3% of the bases), C18- and C20-4D-hydroxysphinganine (24.2 and 14.0% of the bases, respectively). This composition was essentially maintained during development. Glucosylceramide was the major glycolipid at all ages (40-50% of the total neutral sphingolipid content). At birth, 40% of its fatty acids were 2-hydroxylated and 93% of the bases were C18-4D-hydroxysphinganine. In adult epithelial cells, 75% of the fatty acids were 2-hydroxylated and C18- and C20-4D-hydroxysphinganine contributed for 66 and 25% of the bases, respectively. A transient increase of the contribution of nonhydroxylated fatty acids and C18-sphingenine was observed during the first week of life. C20-4D-hydroxysphinganine, which was characterized by gas-liquid chromatography of its aldehydes after periodate oxidation and of its N-acetyl O-trimethylsilyl derivatives, appeared after birth and reached 20% of the bases after two weeks. These findings are another example of the specificity of the lipidic part of glucosylceramide during the ontogenic differentiation.  相似文献   
6.
7.
Endothelial Cell Dysfunction (ECD) is a recognized harbinger of a host of chronic cardiovascular diseases. Using a mouse model of ECD triggered by treatment with L-Nω-methylarginine (L-NMMA), we previously demonstrated that renal microvasculature displays a perturbed protein profile, including diminished expression of two key enzymes of the Krebs cycle associated with a Warburg-type suppression of mitochondrial metabolism. We hypothesized that supplementation with L-glutamine (GLN), that can enter the Krebs cycle downstream this enzymatic bottleneck, would normalize vascular function and alleviate mitochondrial dysfunction. To test this hypothesis, mice with chronic L-NMMA-induced ECD were co-treated with GLN at different concentrations for 2 months. Results confirmed that L-NMMA led to a defect in acetylcholine-induced relaxation of aortic rings that was dose-dependently prevented by GLN. In caveolin-1 transgenic mice characterized by eNOS inactivation, L-NMMA further impaired vasorelaxation which was partially rescued by GLN co-treatment. Pro-inflammatory profile induced by L-NMMA was blunted in mice co-treated with GLN. Using an LC/MS platform for metabolite profiling, we sought to identify metabolic perturbations associated with ECD and offset by GLN supplementation. 3453 plasma molecules could be detected with 100% frequency in mice from at least one treatment group. Among these, 37 were found to be differentially expressed in a 4-way comparison of control vs. LNMMA both with and without GLN. One of such molecules, hippuric acid, an “uremic toxin” was found to be elevated in our non-uremic mice receiving L-NMMA, but normalized by treatment with GLN. Ex vivo analysis of hippuric acid effects on vasomotion demonstrated that it significantly reduced acetylcholine-induced vasorelaxation of vascular rings. In conclusion, functional and metabolic profiling of animals with early ECD revealed macrovasculopathy and that supplementation GLN is capable of improving vascular function. Metabolomic analyses reveal elevation of hippuric acid, which may further exacerbate vasculopathy even before the development of uremia.  相似文献   
8.
The mammalian target of rapamycin (mTOR) is a key component of a signaling pathway which integrates inputs from nutrients and growth factors to regulate cell growth. Recent studies demonstrated that mice harboring an ethylnitrosourea-induced mutation in the gene encoding mTOR die at embryonic day 12.5 (E12.5). However, others have shown that the treatment of E4.5 blastocysts with rapamycin blocks trophoblast outgrowth, suggesting that the absence of mTOR should lead to embryonic lethality at an earlier stage. To resolve this discrepancy, we set out to disrupt the mTOR gene and analyze the outcome in both heterozygous and homozygous settings. Heterozygous mTOR (mTOR(+/-)) mice do not display any overt phenotype, although mouse embryonic fibroblasts derived from these mice show a 50% reduction in mTOR protein levels and phosphorylation of S6 kinase 1 T389, a site whose phosphorylation is directly mediated by mTOR. However, S6 phosphorylation, raptor levels, cell size, and cell cycle transit times are not diminished in these cells. In contrast to the situation in mTOR(+/-) mice, embryonic development of homozygous mTOR(-/-) mice appears to be arrested at E5.5; such embryos are severely runted and display an aberrant developmental phenotype. The ability of these embryos to implant corresponds to a limited level of trophoblast outgrowth in vitro, reflecting a maternal mRNA contribution, which has been shown to persist during preimplantation development. Moreover, mTOR(-/-) embryos display a lesion in inner cell mass proliferation, consistent with the inability to establish embryonic stem cells from mTOR(-/-) embryos.  相似文献   
9.
Both enantiomers of "para-hydroxymexiletine" (PHM), one of the main metabolites of mexiletine, were synthesized and fully characterized. Properties of (R)- and (S)-PHM, in terms of blocking potency and stereoselectivity on frog skeletal muscle Na(+) channels, were evaluated. The presence of a hydroxy group on the aryloxy moiety in the 4-position, as in PHM, reduced potency with respect to mexiletine in reducing I(Na max). However, PHM showed clear use-dependent behavior similar to that of mexiletine and, in contrast with what is observed with the parent compound, maintained its stereoselectivity during the use-dependent block. Chirality 16:72-78, 2004.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号