首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   6篇
  121篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   3篇
  2014年   7篇
  2013年   6篇
  2012年   8篇
  2011年   13篇
  2010年   8篇
  2009年   5篇
  2008年   7篇
  2007年   7篇
  2006年   11篇
  2005年   4篇
  2004年   4篇
  2003年   6篇
  2002年   3篇
  2001年   3篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
排序方式: 共有121条查询结果,搜索用时 10 毫秒
1.
The distribution of a 14.4 kDa S-type lectin was examined in murine neuroblastoma cells, either undifferentiated or after differentiation induced by dibutyryl-cyclic adenosine monophosphate. In undifferentiated cells the immunoreactivity was detected extracellularly, associated with the plasma membrane and in bulges released into the extracellular milieu. Important modifications of the lectin localization were associated with the differentiation process that induced an increased cytosolic expression and a decreased externalization. Possible functions for the lectin expressed intracellularly in the differentiated cells are also considered.  相似文献   
2.
We have used a paleogenetics approach to investigate the genetic landscape of coat color variation in ancient Eurasian dog and wolf populations. We amplified DNA fragments of two genes controlling coat color, Mc1r (Melanocortin 1 Receptor) and CBD103 (canine-β-defensin), in respectively 15 and 19 ancient canids (dogs and wolf morphotypes) from 14 different archeological sites, throughout Asia and Europe spanning from ca. 12 000 B.P. (end of Upper Palaeolithic) to ca. 4000 B.P. (Bronze Age). We provide evidence of a new variant (R301C) of the Melanocortin 1 receptor (Mc1r) and highlight the presence of the beta-defensin melanistic mutation (CDB103-K locus) on ancient DNA from dog-and wolf-morphotype specimens. We show that the dominant KB allele (CBD103), which causes melanism, and R301C (Mc1r), the variant that may cause light hair color, are present as early as the beginning of the Holocene, over 10 000 years ago. These results underline the genetic diversity of prehistoric dogs. This diversity may have partly stemmed not only from the wolf gene pool captured by domestication but also from mutations very likely linked to the relaxation of natural selection pressure occurring in-line with this process.  相似文献   
3.
4.
We investigated how the mitochondrial phase of ceramide-mediated cell death is initiated in nerve growth factor (NGF)-differentiated PC12 cells. We distinguished three independent effects of ceramide: free radical production; a transient increase in cytosolic free calcium; and a long-lasting increase in mitochondrial free calcium. Only the latter led to cell death, which could be prevented by buffering of mitochondrial calcium with the calcium binding protein calbindin D-28K ectopically expressed in mitochondria. We showed that mitochondrial calcium did not increase as a result of the increase in cytosolic free calcium levels. Rather, it appears to derive from the endoplasmic reticulum (ER) since dantrolene, which inhibits release of calcium from ER into cytosol through ryanodine receptors, prevented the increase in cytosolic free calcium but potentiated the increase in mitochondrial free calcium. This suggests that a transfer of calcium occurs directly, or very locally, between the two organelles. This transfer implicated activation of caspase 8 and cleavage of its substrate Bid, a previously unknown function of these cell death intermediaries. The increase in mitochondrial free calcium was also responsible for the release of cytochrome c into the cytosol, underlining the critical role it plays in ceramide-mediated cell death.  相似文献   
5.
6.
Structural genomics has the ambitious goal of delivering three-dimensional structural information on a genome-wide scale. Yet only a small fraction of natural proteins are suitable for structure determination because of bottlenecks such as poor expression, aggregation, and misfolding of proteins, and difficulties in solubilization and crystallization. We propose to overcome these bottlenecks by producing soluble, highly expressed proteins that are derived from and closely related to their natural homologs. Here we demonstrate the utility of this approach by using a green fluorescent protein (GFP) folding reporter assay to evolve an enzymatically active, soluble variant of a hyperthermophilic protein that is normally insoluble when expressed in Escherichia coli, and determining its structure by X-ray crystallography. Analysis of the structure provides insight into the substrate specificity of the enzyme and the improved solubility of the variant.  相似文献   
7.
We have improved our green fluorescent protein (GFP) folding reporter technology [Waldo et al., (1999) Nat. Biotechnol. 17, 691–695] to evolve recalcitrant proteins from Mycobacterium tuberculosis. The target protein is inserted into the scaffolding of the GFP, eliminating false-positive artifacts caused by expression of truncated protein variants from internal cryptic ribosome binding sites in the target RNA. In parallel, we have developed a new quantitative fluorescent protein tagging and detection system based on micro-domains of GFP. This split-GFP system, which works both in vivo and in vitro, is amenable to high-throughput assays of protein expression and solubility [Cabantous et al., (2005) Nat. Biotechnol. 23, 102–107]. Together, the GFP folding reporter and split-GFP technologies offer a comprehensive system for manipulating and improving protein folding and solubility.  相似文献   
8.
In land plants, very-long-chain (VLC) alkanes are major components of cuticular waxes that cover aerial organs, mainly acting as a waterproof barrier to prevent nonstomatal water loss. Although thoroughly investigated, plant alkane synthesis remains largely undiscovered. The Arabidopsis thaliana ECERIFERUM1 (CER1) protein has been recognized as an essential element of wax alkane synthesis; nevertheless, its function remains elusive. In this study, a screen for CER1 physical interaction partners was performed. The screen revealed that CER1 interacts with the wax-associated protein ECERIFERUM3 (CER3) and endoplasmic reticulum-localized cytochrome b5 isoforms (CYTB5s). The functional relevance of these interactions was assayed through an iterative approach using yeast as a heterologous expression system. In a yeast strain manipulated to produce VLC acyl-CoAs, a strict CER1 and CER3 coexpression resulted in VLC alkane synthesis. The additional presence of CYTB5s was found to enhance CER1/CER3 alkane production. Site-directed mutagenesis showed that CER1 His clusters are essential for alkane synthesis, whereas those of CER3 are not, suggesting that CYTB5s are specific CER1 cofactors. Collectively, our study reports the identification of plant alkane synthesis enzymatic components and supports a new model for alkane production in which CER1 interacts with both CER3 and CYTB5 to catalyze the redox-dependent synthesis of VLC alkanes from VLC acyl-CoAs.  相似文献   
9.
Alzheimer β‐amyloid (Aβ) peptides can self‐organize into oligomeric ion channels with high neurotoxicity potential. Cholesterol is believed to play a key role in this process, but the molecular mechanisms linking cholesterol and amyloid channel formation have so far remained elusive. Here, we show that the short Aβ22‐35 peptide, which encompasses the cholesterol‐binding domain of Aβ, induces a specific increase of Ca2+ levels in neural cells. This effect is neither observed in calcium‐free medium nor in cholesterol‐depleted cells, and is inhibited by zinc, a blocker of amyloid channel activity. Double mutations V24G/K28G and N27R/K28R in Aβ22‐35 modify cholesterol binding and abrogate channel formation. Molecular dynamic simulations suggest that cholesterol induces a tilted α‐helical topology of Aβ22‐35. This facilitates the establishment of an inter‐peptide hydrogen bond network involving Asn‐27 and Lys‐28, a key step in the octamerization of Aβ22‐35 which proceeds gradually until the formation of a perfect annular channel in a phosphatidylcholine membrane. Overall, these data give mechanistic insights into the role of cholesterol in amyloid channel formation, opening up new therapeutic options for Alzheimer's disease.

  相似文献   

10.
Very-long-chain fatty acids (VLCFAs) are essential for many aspects of plant development and necessary for the synthesis of seed storage triacylglycerols, epicuticular waxes, and sphingolipids. Identification of the acetyl-CoA carboxylase PASTICCINO3 and the 3-hydroxy acyl-CoA dehydratase PASTICCINO2 revealed that VLCFAs are important for cell proliferation and tissue patterning. Here, we show that the immunophilin PASTICCINO1 (PAS1) is also required for VLCFA synthesis. Impairment of PAS1 function results in reduction of VLCFA levels that particularly affects the composition of sphingolipids, known to be important for cell polarity in animals. Moreover, PAS1 associates with several enzymes of the VLCFA elongase complex in the endoplasmic reticulum. The pas1 mutants are deficient in lateral root formation and are characterized by an abnormal patterning of the embryo apex, which leads to defective cotyledon organogenesis. Our data indicate that in both tissues, defective organogenesis is associated with the mistargeting of the auxin efflux carrier PIN FORMED1 in specific cells, resulting in local alteration of polar auxin distribution. Furthermore, we show that exogenous VLCFAs rescue lateral root organogenesis and polar auxin distribution, indicating their direct involvement in these processes. Based on these data, we propose that PAS1 acts as a molecular scaffold for the fatty acid elongase complex in the endoplasmic reticulum and that the resulting VLCFAs are required for polar auxin transport and tissue patterning during plant development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号