首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1023篇
  免费   59篇
  1082篇
  2024年   1篇
  2023年   7篇
  2022年   5篇
  2021年   27篇
  2020年   9篇
  2019年   14篇
  2018年   11篇
  2017年   7篇
  2016年   19篇
  2015年   53篇
  2014年   48篇
  2013年   85篇
  2012年   110篇
  2011年   78篇
  2010年   58篇
  2009年   47篇
  2008年   70篇
  2007年   74篇
  2006年   63篇
  2005年   53篇
  2004年   68篇
  2003年   41篇
  2002年   50篇
  2001年   5篇
  2000年   5篇
  1999年   6篇
  1998年   11篇
  1997年   10篇
  1996年   9篇
  1995年   8篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1082条查询结果,搜索用时 9 毫秒
1.
The discovery that the single p53 gene encodes several different p53 protein isoforms has initiated a flurry of research into the function and regulation of these novel p53 proteins. Full-length p53 protein level is primarily regulated by the E3-ligase Mdm2, which promotes p53 ubiquitination and degradation. Here, we report that all of the novel p53 isoforms are ubiquitinated and degraded to varying degrees in an Mdm2-dependent and -independent manner, and that high-risk human papillomavirus can degrade some but not all of the novel isoforms, demonstrating that full-length p53 and the p53 isoforms are differentially regulated. In addition, we provide the first evidence that Mdm2 promotes the NEDDylation of p53β. Altogether, our data indicates that Mdm2 can distinguish between the p53 isoforms and modify them differently.  相似文献   
2.
Mouse and human cDNA clones encoding the T-cell and mast cell growth factor P40, now designated IL-9, were used to identify DNA restriction fragment length polymorphisms (RFLPs) in sets of somatic cell hybrids and between inbred strains of mice and interspecific backcross progeny. Segregation of mouse and human chromosomes among somatic cell hybrids indicated a location on mouse chromosome 13 and human chromosome 5. RFLPs were identified among inbred strains of mice. Analysis of chromosome 13 alleles for Tcrg, Dhfr, and Il-9 in an interspecific cross between Mus musculus and NFS/N or C58/J mice indicates that IL-9 is distal to Tcrg and Proximal to Dhfr.  相似文献   
3.
In connectivity models, land cover types are assigned cost values characterizing their resistance to species movements. Landscape genetic methods infer these values from the relationship between genetic differentiation and cost distances. The spatial heterogeneity of population sizes, and consequently genetic drift, is rarely included in this inference although it influences genetic differentiation. Similarly, migration rates and population spatial distributions potentially influence this inference. Here, we assessed the reliability of cost value inference under several migration rates, population spatial patterns and degrees of population size heterogeneity. Additionally, we assessed whether considering intra-population variables, here using gravity models, improved the inference when drift is spatially heterogeneous. We simulated several gene flow intensities between populations with varying local sizes and spatial distributions. We then fit gravity models of genetic distances as a function of (i) the ‘true’ cost distances driving simulations or alternative cost distances, and (ii) intra-population variables (population sizes, patch areas). We determined the conditions making the identification of the ‘true’ costs possible and assessed the contribution of intra-population variables to this objective. Overall, the inference ranked cost scenarios reliably in terms of similarity with the ‘true’ scenario (cost distance Mantel correlations), but this ‘true’ scenario rarely provided the best model goodness of fit. Ranking inaccuracies and failures to identify the ‘true’ scenario were more pronounced when migration was very restricted (<4 dispersal events/generation), population sizes were most heterogeneous and some populations were spatially aggregated. In these situations, considering intra-population variables helps identify cost scenarios reliably, thereby improving cost value inference from genetic data.  相似文献   
4.
The effect of benzyl alcohol on the transverse mobility and repartition of phospholipids in the human erythrocyte membrane was investigated using electron spin resonance and morphological modification of red blood cells. Transmembrane internalization rates and equilibrium distribution in red blood cells of short-chain spin-labeled phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine were strongly modified by treatment with 10-70 mM benzyl alcohol. A dual effect was observed: (a) at 4 degrees C and 37 degrees C there was an N-ethylmaleimide-sensitive, long lasting and fully reversible increase in the spin-labeled phosphatidylserine and phosphatidylethanolamine internalization rate; (b) at 37 degrees C, an enhancement of N-ethylmaleimide-insensitive fluxes of all the labeled phospholipids through the membrane occurred. Both effects were dose-dependent. Erythrocytes submitted to benzyl alcohol incubation also showed dose-dependent shape changes: an immediate one from discocytes to echinocytes, followed by a slower N-ethylmaleimide- and ATP-dependent change to stomatocytes. Moreover, benzyl alcohol treatment was shown to lead to enhanced hydrolysis of intracellular ATP. All the effects of benzyl alcohol can be described as an accumulation of labeled phosphatidylethanolamine (and labeled phosphatidylcholine at 37 degrees C) in the inner leaflet. This can be interpreted as a perturbation of the erythrocyte membrane, leading to an energy-consuming specific increase in aminophospholipid translocase activity, in addition to a slow and passive bidirectional flux of all phospholipids at 37 degrees C.  相似文献   
5.
Extensive multiple electrolytic lesions were placed into the nucleus raphes of the brain stem in the pigeon. Diurnal pituitary-adrenocortical rhythmicity appeared not to be altered and basal plasma corticosterone level remained quite normal in raphe lesioned birds. Electrical stimulations through permanently implanted electrode were delivered in various central nervous structures in unanaesthetized, freely moving pigeons. Stimulations of nucleus raphes and of various parts of formatio reticularis led to a significant rise in plasma corticosterone within 16 to 19 min after the beginning of the stimulating session. Then, plasma B came again to initial level within 15 minutes. Stimulations of the corticotropic area of the hypothalamus (n. posterior medialis hypothalami) and of archistriatum dorsalis induced an early plasma corticosterone increase occurring immediately after the stimulating burst (10 min). Stimulating the n. septum medialis also had an immediate, but reverse (decrease) effect on plasma corticosterone level. Stress-induced pituitary-adrenal cortical activation exhibited a temporal pattern quite similar to that observed after brain stem (n. raphes or formatio reticularis) stimulation. It is suggested that these various limbic and brain stem areas might be involved in some "limbic system-midbrain circuit" with two components : The forebrain component might be involved in the regulation and diurnal modulation of basal hypothalamic-pituitary-adrenocortical function, the brain-stem component interferring with stress-induced responses.  相似文献   
6.
Many p53 missense mutations possess dominant-negative activity and oncogenic gain of function. We report that for structurally destabilized p53 mutants, these effects result from mutant-induced coaggregation of wild-type p53 and its paralogs p63 and p73, thereby also inducing a heat-shock response. Aggregation of mutant p53 resulted from self-assembly of a conserved aggregation-nucleating sequence within the hydrophobic core of the DNA-binding domain, which becomes exposed after mutation. Suppressing the aggregation propensity of this sequence by mutagenesis abrogated gain of function and restored activity of wild-type p53 and its paralogs. In the p53 germline mutation database, tumors carrying aggregation-prone p53 mutations have a significantly lower frequency of wild-type allele loss as compared to tumors harboring nonaggregating mutations, suggesting a difference in clonal selection of aggregating mutants. Overall, our study reveals a novel disease mechanism for mutant p53 gain of function and suggests that, at least in some respects, cancer could be considered an aggregation-associated disease.  相似文献   
7.
Focal adhesion kinase (FAK) is a protein tyrosine kinase enriched in focal adhesions, which plays a critical role in integrin-dependent cell motility and survival. The crucial step in its activation is autophosphorylation on Tyr-397, which promotes the recruitment of several enzymes including Src family kinases and the activation of multiple signaling pathways. We found in a yeast two-hybrid screen that the N-terminal domain of FAK interacted with protein inhibitor of activated STAT1 (PIAS1). This interaction was confirmed and shown to be direct using in vitro assays. PIAS1 was co-immunoprecipitated with FAK from transfected cells and brain extracts. PIAS1 has recently been recognized as a small ubiquitin-like modifier (SUMO) ligase. In the presence of PIAS1 and SUMO-1, FAK was sumoylated in intact cells, whereas PYK2, a closely related enzyme, was not. Sumoylation occurred on Lys-152, a residue conserved in FAK during evolution. Sumoylated FAK, like PIAS1, was recovered predominantly from the nuclear fraction. Sumoylation did not require the catalytic activity or autophosphorylation of FAK. In contrast, sumoylation increased dramatically the ability of FAK to autophosphorylate in intact cells and in immune precipitate kinase assays. Endogenous FAK was sumoylated in the presence of PIAS1 and SUMO-1 independently of cell adhesion, and autophosphorylation of sumoylated FAK was persistently increased in suspended cells. These observations show that sumoylation controls the activity of a protein kinase and suggest that FAK may play a novel role in signaling between the plasma membrane and the nucleus.  相似文献   
8.
Genome editing, which is an unprecedented technological breakthrough, has provided a valuable means of creating targeted mutations in plant genomes. In this study, we developed a genomic web tool to identify all gRNA target sequences in the coffee genome, along with potential off-targets. In all, 8,145,748 CRISPR guides were identified in the draft genome of Coffea canephora corresponding to 5,338,568 different sequences and, of these, 4,655,458 were single, and 514,591 were covering exons. The proof of concept was established by targeting the phytoene desaturase gene (CcPDS) using the Agrobacterium tumefaciens transformation technique and somatic embryogenesis as the plant regeneration method. An analysis of the RNA-guided genome-editing events showed that 22.8% of the regenerated plants were heterozygous mutants and 7.6% were homozygous mutants. Mutation efficiency at the target site was estimated to be 30.4%. We demonstrated that genome editing by the CRISPR/Cas9 method is an efficient and reliable way of knocking out genes of agronomic interest in the coffee tree, opening up the way for coffee molecular breeding. Our results also showed that the use of somatic embryogenesis, as the method for regenerating genome-edited plants, could restrict the choice of targeted genes to those that are not essential to the embryo development and germination steps.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号