首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   4篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   6篇
  2013年   2篇
  2012年   6篇
  2011年   4篇
  2010年   7篇
  2009年   1篇
  2008年   2篇
  2007年   5篇
  2006年   3篇
  2005年   5篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2000年   1篇
  1998年   4篇
  1996年   1篇
  1994年   1篇
  1987年   1篇
  1984年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
1.
Epidermal growth factor (EGF)-induced EGFR tyrosine kinase receptor activation in cancer cell survival responses has become a strategic molecular-targeting clinical therapeutic intent, but the failures of these targeted approaches in the clinical setting demand alternate strategies. Here, we uncover a novel neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with GPCR neuromedin B, which is essential for EGF-induced receptor activation and cellular signaling. Neu1 and MMP-9 form a complex with EGFR on the cell surface. Tamiflu (oseltamivir phosphate), anti-Neu1 antibodies, broad range MMP inhibitor galardin (GM6001), neuromedin B GPCR specific antagonist BIM-23127, the selective inhibitor of whole heterotrimeric G-protein complex BIM-46174 and MMP-9 specific inhibitor dose-dependently inhibited Neu1 activity associated with EGF stimulated 3T3–hEGFR cells. Tamiflu, anti-Neu1 antibodies and MMP9i attenuated EGFR phosphorylation associated with EGF-stimulated cells. Preclinical data provide the proof-of-evidence for a therapeutic targeting of Neu1 with Tamiflu in impeding human pancreatic cancer growth and metastatic spread in heterotopic xenografts of eGFP-MiaPaCa-2 tumors growing in RAGxCγ double mutant mice. Tamiflu-treated cohort exhibited a reduction of phosphorylation of EGFR-Tyr1173, Stat1-Tyr701, Akt-Thr308, PDGFRα-Tyr754 and NFκBp65-Ser311 but an increase in phospho-Smad2-Ser465/467 and -VEGFR2-Tyr1175 in the tumor lysates from the xenografts of human eGFP-MiaPaCa-2 tumor-bearing mice. The findings identify a novel promising alternate therapeutic treatment of human pancreatic cancer.  相似文献   
2.
3.

Background

This study mapped regions of genomic RNA (gRNA) important for packaging and propagation of mouse mammary tumor virus (MMTV). MMTV is a type B betaretrovirus which preassembles intracellularly, a phenomenon distinct from retroviruses that assemble the progeny virion at cell surface just before budding such as the type C human and feline immunodeficiency viruses (HIV and FIV). Studies of FIV and Mason-Pfizer monkey virus (MPMV), a type D betaretrovirus with similar intracellular virion assembly processes as MMTV, have shown that the 5′ untranslated region (5′ UTR) and 5′ end of gag constitute important packaging determinants for gRNA.

Methodology

Three series of MMTV transfer vectors containing incremental amounts of gag or 5′ UTR sequences, or incremental amounts of 5′ UTR in the presence of 400 nucleotides (nt) of gag were constructed to delineate the extent of 5′ sequences that may be involved in MMTV gRNA packaging. Real time PCR measured the packaging efficiency of these vector RNAs into MMTV particles generated by co-transfection of MMTV Gag/Pol, vesicular stomatitis virus envelope glycoprotein (VSV-G Env), and individual transfer vectors into human 293T cells. Transfer vector RNA propagation was monitored by measuring transduction of target HeLaT4 cells following infection with viral particles containing a hygromycin resistance gene expression cassette on the packaged RNA.

Principal Findings

MMTV requires the entire 5′ UTR and a minimum of ∼120 nucleotide (nt) at the 5′ end of gag for not only efficient gRNA packaging but also propagation of MMTV-based transfer vector RNAs. Vector RNAs without the entire 5′ UTR were defective for both efficient packaging and propagation into target cells.

Conclusions/Significance

These results reveal that the 5′ end of MMTV genome is critical for both gRNA packaging and propagation, unlike the recently delineated FIV and MPMV packaging determinants that have been shown to be of bipartite nature.  相似文献   
4.
We outline a general strategy for determining the effective coarse-grained interactions between the amino acids of a protein from the experimentally derived native-state structures. The method is, in principle, free from any adjustable or empirically determined parameters, and it is tested on simple models and compared with other existing approaches. Proteins 30:244–248, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
5.
The signaling pathways of mammalian Toll-like receptors (TLR) are well characterized, but the initial molecular mechanisms activated following ligand interactions with the receptors remain poorly defined. Here, we show a membrane controlling mechanism that is initiated by ligand binding to TLR-2, -3 and-4 to induce Neu1 sialidase activity within minutes in live primary bone marrow (BM) macrophage cells and macrophage and dendritic cell lines. Central to this process is that Neu1 and not Neu2,-3 and-4 forms a complex with TLR-2,-3 and-4 on the cell surface of naïve macrophage cells. Neuraminidase inhibitors BCX1827, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA), zanamivir and oseltamivir carboxylate have a limited significant inhibition of the LPS-induced sialidase activity in live BMC-2 macrophage cells but Tamiflu (oseltamivir phosphate) completely blocks this activity. Tamiflu inhibits LPS-induced sialidase activity in live BMC-2 cells with an IC50 of 1.2?μM compared to an IC50 of 1015?μM for its hydrolytic metabolite oseltamivir carboxylate. Tamiflu blockage of LPS-induced Neu1 sialidase activity is not affected in BMC-2 cells pretreated with anticarboxylesterase agent clopidogrel. Endotoxin LPS binding to TLR4 induces Neu1 with subsequent activation of NFκB and the production of nitric oxide and pro-inflammatory IL-6 and TNFα cytokines in primary and macrophage cell lines. Hypomorphic cathepsin A mice with a secondary Neu1 deficiency respond poorly to LPS-induced pro-inflammatory cytokines compared to the wild-type or hypomorphic cathepsin A with normal Neu1 mice. Our findings establish an unprecedented mechanism for pathogen molecule-induced TLR activation and cell function, which is critically dependent on Neu1 sialidase activity associated with TLR ligand treated live primary macrophage cells and macrophage and dendritic cell lines.  相似文献   
6.
Mammalian Toll-like receptors (TLRs) are a family of receptors that recognize pathogen-associated molecular patterns. Not only are TLRs crucial sensors of microbial (e.g., viruses, bacteria and parasite) infections, they also play an important role in the pathophysiology of infectious diseases, inflammatory diseases, and possibly in autoimmune diseases. Thus, the intensity and duration of TLR responses against infectious diseases must be tightly controlled. It follows that understanding the structural integrity of sensor receptors, their ligand interactions and signaling components is essential for subsequent immunological protection. It would also provide important opportunities for disease modification through sensor manipulation. Although the signaling pathways of TLR sensors are well characterized, the parameters controlling interactions between the sensors and their ligands still remain poorly defined. We have recently identified a novel mechanism of TLR activation by its natural ligand, which has not been previously observed 1,2. It suggests that ligand-induced TLR activation is tightly controlled by Neu1 sialidase activation. We have also reported that Neu1 tightly regulates neurotrophin receptors like TrkA and TrkB 3, which involve Neu1 and matrix metalloproteinase-9 (MMP-9) cross-talk in complex with the receptors 4. The sialidase assay has been initially use to find a novel ligand, thymoquinone, in the activation of Neu4 sialidase on the cell surface of macrophages, dendritic cells and fibroblast cells via GPCR Gαi proteins and MMP-9 5. For TLR receptors, our data indicate that Neu1 sialidase is already in complex with TLR-2, -3 and -4 receptors, and is induced upon ligand binding to either receptor. Activated Neu1 sialidase hydrolyzes sialyl α-2,3-linked β-galactosyl residues distant from ligand binding to remove steric hinderance to TLR-4 dimerization, MyD88/TLR4 complex recruitment, NFkB activation and pro-inflammatory cell responses. In a collaborative report, Neu1 sialidase has been shown to regulate phagocytosis in macrophage cells 6. Taken together, the sialidase assay has provided us with powerful insights to the molecular mechanisms of ligand-induced receptor activation. Although the precise relationship between Neu1 sialidase and the activation of TLR, Trk receptors has yet to be fully elucidated, it would represent a new or pioneering approach to cell regulation pathways.Download video file.(57M, mov)  相似文献   
7.
8.
Renal strong ion compensation to chronic respiratory acidosis has been established, but the nature of the response to acute respiratory acidosis is not well defined. We hypothesized that the response to acute respiratory acidosis in sheep is a rapid increase in the difference in renal fractional excretions of chloride and sodium (Fe(Cl) - Fe(Na)). Inspired CO(2) concentrations were increased for 1 h to significantly alter P(a)CO(2) and pH(a) from 32 ± 1 mm Hg and 7.52 ± 0.02 to 74 ± 2 mm Hg and 7.22 ± 0.02, respectively. Fe(Cl) - Fe(Na) increased significantly from 0.372 ± 0.206 to 1.240 ± 0.217% and returned to baseline at 2 h when P(a)CO(2) and pH(a) were 37 ± 0.6 mm Hg and 7.49 ± 0.01, respectively. Arterial pH and Fe(Cl) - Fe(Na) were significantly correlated. We conclude that the kidney responds rapidly to acute respiratory acidosis, within 30 min of onset, by differential reabsorption of sodium and chloride.  相似文献   
9.
A phase of matter is a familiar notion for inanimate physical matter. The nature of a phase of matter transcends the microscopic material properties. For example, materials in the liquid phase have certain common properties independent of the chemistry of the constituents: liquids take the shape of the container; they flow; and they can be poured—alcohol, oil, and water as well as a Lennard-Jones computer model exhibit similar behavior when poised in the liquid phase. Here, we identify a hitherto unstudied “phase” of matter, the elixir phase, in a simple model of a polymeric chain whose backbone has the correct local cylindrical symmetry induced by the tangent to the chain. The elixir phase appears on breaking the cylindrical symmetry by adding side spheres along the negative normal direction, as in proteins. This phase, nestled between other phases, has multiple ground states made up of building blocks of helices and almost planar sheets akin to protein native folds. We discuss the similarities of this “phase” of a finite size system to the liquid crystal and spin glass phases. Our findings are relevant for understanding proteins; the creation of novel bioinspired nanomachines; and also may have implications for life elsewhere in the cosmos.  相似文献   
10.
In vertebrates, three proteins--PERK, IRE1alpha, and ATF6alpha--sense protein-misfolding stress in the ER and initiate ER-to-nucleus signaling cascades to improve cellular function. The mechanism by which this unfolded protein response (UPR) protects ER function during stress is not clear. To address this issue, we have deleted Atf6alpha in the mouse. ATF6alpha is neither essential for basal expression of ER protein chaperones nor for embryonic or postnatal development. However, ATF6alpha is required in both cells and tissues to optimize protein folding, secretion, and degradation during ER stress and thus to facilitate recovery from acute stress and tolerance to chronic stress. Challenge of Atf6alpha null animals in vivo compromises organ function and survival despite functional overlap between UPR sensors. These results suggest that the vertebrate ATF6alpha pathway evolved to maintain ER function when cells are challenged with chronic stress and provide a rationale for the overlap among the three UPR pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号