首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   417篇
  免费   25篇
  2022年   3篇
  2021年   12篇
  2020年   9篇
  2019年   4篇
  2018年   10篇
  2017年   7篇
  2016年   8篇
  2015年   14篇
  2014年   26篇
  2013年   28篇
  2012年   46篇
  2011年   43篇
  2010年   26篇
  2009年   31篇
  2008年   37篇
  2007年   19篇
  2006年   9篇
  2005年   24篇
  2004年   15篇
  2003年   17篇
  2002年   15篇
  2001年   6篇
  2000年   5篇
  1999年   3篇
  1998年   4篇
  1996年   1篇
  1995年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1979年   4篇
  1978年   2篇
排序方式: 共有442条查询结果,搜索用时 78 毫秒
1.
Escherichia coli expresses a specific ammonium (methylammonium) transport system (Amt) when cultured with glutamate or glutamine as the nitrogen source. Over 95% of this Amt activity is repressed by growth of wild-type cells on media containing ammonia. The control of Amt expression was studied with strains containing specific mutations in the glnALG operon. GlnA- (glutamine synthetase deficient) mutants, which contain polar mutations on glnL and glnG genes and therefore have the Reg- phenotype (fail to turn on nitrogen-regulated operons such as histidase), expressed less than 10% of the Amt activity observed for the parental strain. Similarly, low levels of Amt were found in GlnG mutants having the GlnA+ Reg- phenotype. However, GlnA- RegC mutants (a phenotype constitutive for histidase) contained over 70% of the parental Amt activity. At steady-state levels, GlnA- RegC mutants accumulated chemically unaltered [14C]methylammonium against a 60- to 80-fold concentration gradient, whereas the labeled substrate was trapped within parental cells as gamma-glutamylmethylamide. GlnL Reg- mutants (normal glutamine synthetase regulation) had less than 4% of the Amt activity observed for the parental strain. However, the Amt activity of GlnL RegC mutants was slightly higher than that of the parental strain and was not repressed during growth of cells in media containing ammonia. These findings demonstrate that glutamine synthetase is not required for Amt in E. coli. The loss of Amt in certain GlnA- strains is due to polar effects on glnL and glnG genes, whose products are involved in expression of nitrogen-regulated genes, including that for Amt.  相似文献   
2.
Autosomal dominant Charcot-Marie-Tooth type-1A neuropathy (CMT1A) is a demyelinating peripheral nerve disorder that is commonly associated with a submicroscopic tandem DNA duplication of a 1.5-Mb region of 17p11.2p12 that contains the peripheral myelin gene PMP22. Clinical features of CMT1A include progressive distal muscle atrophy and weakness, foot and hand deformities, gait abnormalities, absent reflexes, and the completely penetrant electrophysiologic phenotype of symmetric reductions in motor nerve conduction velocities (NCVs). Molecular and fluorescence in situ hybridization (FISH) analyses were performed to determine the duplication status of the PMP22 gene in four patients with rare cytogenetic duplications of 17p. Neuropathologic features of CMT1A were seen in two of these four patients, in addition to the complex phenotype associated with 17p partial trisomy. Our findings show that the CMT1A phenotype of reduced NCV is specifically associated with PMP22 gene duplication, thus providing further support for the PMP22 gene dosage mechanism for CMT1A. Received: 3 May 1995 / Revised: 1 August 1995  相似文献   
3.
Impact of altered serum prolactin status on enzymes involved in glycoprotein metabolism in epididymal tissue of matured monkeys was studied. Hyperprolactinemia (ovine prolactin-250 micrograms/kg body weight/day for 30 days) significantly inhibited the specific activities of dolichylphosphate mannosyl transferase, dolichylphosphate glucosyl transferase and galactosyl transferase, in the epididymal tissues. However, it had an enhanced effect on epididymal glycosidases such as beta-galactosidase, beta-N-acetyl glucosaminidase, beta-N-acetyl galactosaminidase, alpha-mannosidase and alpha-L-fucosidase. Hypoprolactinemia (bromocriptine mesylate-1-mg/kg body weight/day for 30 days) on other hand had no significant effect on the specific activities of both, glycosyltransferases and glycosidases, in the epididymal tissues. The results suggest that hyperprolactinemia inhibits epididymal glycoprotein metabolism by impairing the incorporation of oligosaccharide units into proteins with enhanced degradation. This may have adverse effect on events leading to sperm maturation in epididymal environment.  相似文献   
4.
5.
6.
Staphylococcus aureus, an opportunistic pathogen, causes diverse community and nosocomial-acquired human infections, including folliculitis, impetigo, sepsis, septic arthritis, endocarditis, osteomyelitis, implant-associated biofilm infections and contagious mastitis in cattle. In recent days, both methicillin-sensitive and methicillin-resistant S. aureus infections have increased. Highly effective anti-staphylococcal agents are urgently required. Lysostaphin is a 27 kDa zinc metallo antimicrobial lytic enzyme that is produced by Staphylococcus simulans biovar staphylolyticus and was first discovered in the 1960s. Lysostaphin is highly active against S. aureus strains irrespective of their drug-resistant patterns with a minimum inhibitory concentration of ranges between 0·001 and 0·064 μg ml−1. Lysostaphin has activity against both dividing and non-dividing S. aureus cells; and can seep through the extracellular matrix to kill the biofilm embedded S. aureus. In spite of having excellent anti-staphylococcal activity, its clinical application is hindered because of its immunogenicity and reduced bio-availability. Extensive research with lysostaphin lead to the development of several engineered lysostaphin derivatives with reduced immunogenicity and increased serum half-life. Therapeutic efficacy of both native and engineered lysostaphin derivatives was studied by several research groups. This review provides an overview of the therapeutic applications of native and engineered lysostaphin derivatives developed to eradicate S. aureus infections.  相似文献   
7.
Twelve novel zidovudine derivatives were prepared by modifying 5 ′-hydroxyl group of sugar moiety (1–8) and 5-methyl group of thymidine nucleus (9–12) and characterized spectrally. The compounds were evaluated for anti-HIV-1, antitubercular and antibacterial activities. Compound (3-azido-tetrahydro-5- (3,4-dihydro-5-methyl-2,4-dioxopyrimidin- 1 (2H)-yl) furan-2-yl)methyl 7- (4- (2-phenylacetoyloxy) -3,5- dimethylpiperazin-1-yl) -5- (2-phenylacetoyloxyamino) -1-cyclopropyl-6,8-difluoro-1,4-dihydro-4-oxoquinoline-3-carboxylate (5) was found to be the most potent anti-HIV-1 agent with EC50 of 0.0012 μM against HIV-1IIIB and CC50 of 34.05 μM against MT-4 with selectivity index of 28,375. Compound 5 inhibited Mycobacterium tuberculosis with MIC of 1.72 μM and inhibited four pathogenic bacteria with MIC of less than 1 μM.  相似文献   
8.
Alterations of endothelial cells and the vasculature play a central role in the pathogenesis of a broad spectrum of the most dreadful of human diseases, as endothelial cells have the key function of participating in the maintenance of patent and functional capillaries. The endothelium is directly involved in peripheral vascular disease, stroke, heart disease, diabetes, insulin resistance, chronic kidney failure, tumor growth, metastasis, venous thrombosis, and severe viral infectious diseases. Dysfunction of the vascular endothelium is thus a hallmark of human diseases. In this review the main endothelial abnormalities found in various human diseases such as cancer, diabetes mellitus, atherosclerosis, and viral infections are addressed.  相似文献   
9.
Lmb is a 34 kDa laminin binding surface adhesin of Streptococcus agalactiae. The structure of Lmb reported by us recently has shown that it consists of a metal binding crevice, in which a zinc ion is coordinated to three highly conserved histidines. To elucidate the structural and functional significance of the metal ion in Lmb, these histidines have been mutated to alanine and single, double and triple mutants were generated. These mutations resulted in insolubility of the protein and revealed altered secondary and tertiary structures, as evidenced by circular dichroism and fluorescence spectroscopy studies. The mutations also significantly decreased the binding affinity of Lmb to laminin, implicating the role played by the metal binding residues in maintaining the correct conformation of the protein for its binding to laminin. A highly disordered loop, proposed to be crucial for metal acquisition in homologous structures, was deleted in Lmb by mutation (ΔLmb) and its crystal structure was solved at 2.6 Å. The ΔLmb structure was identical to the native Lmb structure with a bound zinc ion and exhibited laminin binding activity similar to wild type protein, suggesting that the loop might not have an important role in metal acquisition or adhesion in Lmb. Targeted mutations of histidine residues confirmed the importance of the zinc binding crevice for the structure and function of the Lmb adhesin.  相似文献   
10.
Improving salinity tolerance in the most widely cultivated cereal, bread wheat (Triticum aestivum L.), is essential to increase grain yields on saline agricultural lands. A Portuguese landrace, Mocho de Espiga Branca accumulates up to sixfold greater leaf and sheath sodium (Na+) than two Australian cultivars, Gladius and Scout, under salt stress in hydroponics. Despite high leaf and sheath Na+ concentrations, Mocho de Espiga Branca maintained similar salinity tolerance compared to Gladius and Scout. A naturally occurring single nucleotide substitution was identified in the gene encoding a major Na+ transporter TaHKT1;5-D in Mocho de Espiga Branca, which resulted in a L190P amino acid residue variation. This variant prevents Mocho de Espiga Branca from retrieving Na+ from the root xylem leading to a high shoot Na+ concentration. The identification of the tissue-tolerant Mocho de Espiga Branca will accelerate the development of more elite salt-tolerant bread wheat cultivars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号