首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   2篇
  186篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2018年   9篇
  2017年   5篇
  2016年   4篇
  2015年   9篇
  2014年   9篇
  2013年   8篇
  2012年   11篇
  2011年   11篇
  2010年   9篇
  2009年   2篇
  2008年   3篇
  2007年   6篇
  2006年   12篇
  2005年   9篇
  2004年   6篇
  2003年   12篇
  2002年   2篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1984年   2篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
  1968年   1篇
  1966年   1篇
  1963年   1篇
排序方式: 共有186条查询结果,搜索用时 0 毫秒
1.
Pig polyclonal antibodies against the biospecific complex of trypsin with its inhibitor “antilysine” were prepared by affinity chromatography on trypsin-bound beaded cellulose. The antibodies were characterised by ion exchange FPLC and SDS PAGE as pure IgG. The catalytic activity of trypsin was not affected by interaction with these antibodies, even in the presence of excess of antibody. Trypsin, biospecifically bound to CNBr-activated Sepharose 4B, displayed full catalytic activity.  相似文献   
2.
3.
Starvation, chilling, and injury of last instar Galleria mellonella larvae typically elicit extra larval molts or a delay in pupation. The primary sites of action and the nature of the signals by which these treatments affect development are not known. However, since the connections of the brain to the nerve cord are crucial for the effects of starvation and chilling, these signals apparently affect the brain-centered program of developmental regulation via the nerve cord. Chilling, and occasionally starvation, cause extra larval molts in last instar larvae treated prior to the nervous inhibition of their corpora allata; release of a cerebral allatotropin, which stimulates the production of juvenile hormone, appears to be involved in this effect. After this time, a delay in pupation is the principal effect of starvation and chilling, and is apparently due to a temporal inhibition of the release of the prothoracicotropic hormone. Chilling also appears to inhibit unstimulated ecdysteroid production by the prothoracic glands. The effect of injury is not mediated by the nerve cord, but appears to involve an inhibitory humoral factor that affects either the brain or the prothoracic glands themselves. Injury also stimulates juvenile hormone production, an effect which is enhanced when the brain is separated from the nerve cord and which is evidenced by a delay of ecdysis and the occasional retention of some larval features in the ecdysed insects. None of the effects of these various treatments on the brain and the endocrine glands persist when the brains or glands are implanted into untreated hosts.  相似文献   
4.
Heme proteins represent a diverse class of biomolecules responsible for an extremely diverse array of physiological functions including electron transport, monooxygenation, ligand transport and storage, cellular signaling, respiration, etc. An intriguing aspect of these proteins is that such functional diversity is accomplished using a single type of heme macrocycle based upon iron protoporphyrin IX. The functional diversity originates from a delicate balance of inter-molecular interactions within the protein matrix together with well choreographed dynamics that modulate the heme electronic structure as well as ligand entry/exit pathways from the bulk solvent to the active site. Of particular interest are the dynamics and energetics associated with the entry/exit of ligands as this process plays a significant role in regulating the rates of heme protein activity. Time-resolved photoacoustic calorimetry (PAC) has emerged as a powerful tool through which to probe the underlying energetics associated with small molecule dissociation and release to the bulk solvent in heme proteins on time scales from tens of nanoseconds to several microseconds. In this review, the results of PAC studies on various classes of heme proteins are summarized highlighting how different protein structures affect the thermodynamics of ligand migration. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.  相似文献   
5.
Azo-coupling methods were used for demonstrating non-specific esterase in the wheat root in all parts of a transverse section, usually with the exception of the woody parts of the vascular bundle. The central cylinder gave a more intense reaction than the primary cortex and the rhizoderm. The reaction was not inhibited by dodecyl sulphate. A weakening of the reaction intensity was observed after application of AgNO3. The Tween method did not yield reliable results.  相似文献   
6.
7.
8.
9.
We have screened a library of structurally distinct acridine derivatives (19 compounds) for their ability to inhibit lysozyme amyloid aggregation in vitro. Studied acridines were divided into three structurally different groups depending on the molecule planarity and type of the side chain-planar acridines, spiroacridines and tetrahydroacridines. Thioflavine T fluorescence assay and transmission electron microscopy were used for monitoring the inhibiting activity of acridines. We have found that both the structure of the acridine side chains and molecule planarity influence their antiamyloidogenic activity. The planar acridines inhibited lysozyme aggregation effectively. Spiroacridines and tetrahydroacridines had no significant effect on the prevention of lysozyme fibrillization, probably resulting from the presence of the heterocyclic 5-membered ring and non-planarity of molecule. Moreover, in the presence of some tetrahydroacridines the enhanced extent of aggregation was detected. We identified the most active acridine derivates from studied compound library characterized by low micromolar IC(50) values, which indicate their possible application for therapeutic purpose.  相似文献   
10.
Infrared and Raman spectroscopy were applied to identify restraints for the structure determination of the 20 amino acid loop between two beta-sheets of the N-terminal region of the PsbQ protein of the oxygen evolving complex of photosystem II from Spinacia oleracea by restraint-based homology modeling. One of the initial models has shown a stable fold of the loop in a 20 ns molecular dynamics simulation that is in accordance with spectroscopic data. Cleavage of the first 12 amino acids leads to a permanent drift in the root means square deviation of the protein backbone and induces major structural changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号