首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   13篇
  212篇
  2016年   5篇
  2015年   8篇
  2014年   7篇
  2013年   3篇
  2012年   7篇
  2011年   8篇
  2010年   8篇
  2009年   8篇
  2008年   5篇
  2007年   6篇
  2006年   2篇
  2005年   7篇
  2004年   9篇
  2003年   8篇
  2002年   4篇
  2001年   3篇
  2000年   6篇
  1999年   3篇
  1998年   5篇
  1997年   4篇
  1996年   5篇
  1995年   2篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1984年   5篇
  1983年   2篇
  1981年   5篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1977年   4篇
  1976年   4篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1971年   3篇
  1970年   5篇
  1969年   3篇
  1968年   4篇
  1967年   4篇
  1966年   3篇
  1965年   3篇
  1936年   3篇
  1934年   2篇
排序方式: 共有212条查询结果,搜索用时 0 毫秒
1.
2.
Quantitative histology of the hypertrophied human heart   总被引:1,自引:0,他引:1  
Myocardial hypertrophy accompanies systemic hypertension and aortic stenosis, i.e., pressure overload. In man cardiac failure only appears after years of pressure overload, during which time cardiac function had been maintained. The structural correlates of cardiac failure have been a subject of much interest for many years. Several hypotheses relating alterations in muscle fiber alignment, capillary density, or collagen content have been offered. The application of morphometric techniques has provided essential quantitative information on the structural components of the normal and diseased heart. These data indicate that muscle fiber alignment remains normal in the pressure overloaded heart despite the presence of hypertrophy or the appearance of clinical failure. On the other hand, capillary density is decreased and collagen content is increased in hypertrophied hearts. Chemical studies on collagen concentration however have yielded inconsistent results. The relative contribution of the microcirculation and collagenous structure of the myocardium on its respective O2 availability, mechanical behavior, and deterioration in pump function will require further investigation.  相似文献   
3.
The properties of 125I-apamin binding with rat central nervous system slices were analysed in vitro using computerized densitometric autoradiography. Scatchard analysis performed for the data of binding experiments in rat brain and spinal cord demonstrates that apamin binds to a single class of non-interacting binding sites in all investigated structures. The dissociation constant values (KD) were similar in all investigated structures (31-38 pM). The maximal binding capacity (Bmax) was observed in the structures of limbic olfactory system (30 fmol/mg protein), the lowest in brain white matter (0.5 fmol/mg protein). It is concluded that the observed pattern of 125I-apamin binding might represent the topography of a class of Ca2+ dependent K+ channels in the rat central nervous system.  相似文献   
4.
We have examined the phylogenetic distribution of two t-specific markers among representatives of various taxa belonging to the genus Mus. The centromeric TCP-1a marker (a testicular protein variant specific for all t-haplotypes so far studied) has also been apparently detected in several non-t representatives of the Mus IVA, Mus IVB, and probably M. cervicolor species. By contrast, a t-specific restriction- fragment-length polymorphism allele (RFLP) of the telomeric alpha- globin pseudogene DNA marker alpha-psi-4 was found only in animals belonging to the M. musculus-complex species either bearing genuine t- haplotypes or, like the M. m. bactrianus specimen studied here, likely to do so. This t-specific alpha-psi-4 RFLP allele was found to be as divergent from the RFLP alleles of the latter, non-t, taxonomical groups as it is from Mus 4A, Mus 4B, or M. spretus ones. These results suggest the presence of t-haplotypes and of t-specific markers in populations other than those belonging to the M. m. domesticus and M. m. musculus subspecies, implying a possible origin for t-haplotypes prior to the radiation of the most recent offshoot of the Mus genus (i.e., the spretus/domesticus divergence), some 1-3 Myr ago.   相似文献   
5.
The advent of green fluorescent protein technology, its use in photobleaching experiments and the development of methods to rapidly acquire images and analyze complex datasets have opened the door to unraveling the mechanisms of nuclear functions in living cells. Studies over the past few years have characterized the movement of chromatin, nuclear proteins and nuclear bodies and, in some cases, correlated their dynamics with energy dependence, cell cycle progression, developmental changes, factor targeting and nuclear position. The mechanisms by which nuclear components move or are restrained have important implications for understanding not only the efficacy of nuclear functions but also the regulation of developmental programs and cellular growth.  相似文献   
6.
7.
8.
9.
Presence or absence of N-acetylneuraminic acid (Neu5Ac) can change a sialylated glycoprotein's serum half-life and possibly its function. We evaluated the linearity, sensitivity, reproducibility, and accuracy of a HPAEC/PAD method to determine its suitability for routine simultaneous analysis of Neu5Ac and N-glycolylneuraminic acid (Neu5Gc). An effective internal standard for this analysis is 3-deoxy-d-glycero-d- galacto-2-nonulosonic acid (KDN). We investigated the effect of the Au working electrode recession and determined that linear range and sensitivity were dependent on electrode recession. Using an electrode that was 350 &mgr;m recessed from the electrode block, the minimum detection limits of Neu5Ac, KDN, and Neu5Gc were 2, 5, and 2 pmol, respectively, and were reduced to 1, 2, and 0.5 pmol using a new electrode. The response of standards was linear from 10 to 500 pmol (r2>0.99) regardless of electrode recession. When Neu5Ac, KDN, and Neu5Gc (200 pmol each) were analyzed repetitively for 48 h, area RSDs were <3%. Reproducibility was unaffected when injections of glycoprotein neuraminidase and acid digestions were interspersed with standard injections. Area RSDs of Neu5Ac and Neu5Gc improved when the internal standard was used. We determined the precision and accuracy of this method for both a recessed and a new working electrode by analyzing Neu5Ac and Neu5Gc contents of bovine fetuin and bovine and human transferrins. Results were consistent with published values and independent of the working electrode. The sensitivity, reproducibility, and accuracy of this method make it suitable for direct routine analysis of glycoprotein Neu5Ac and Neu5Gc contents.   相似文献   
10.
The observation that increased muscular activity leads to muscle hypertrophy is well known, but identification of the biochemical and physiological mechanisms by which this occurs remains an important problem. Experiments have been described (5, 6) which suggest that creatine, an end product of contraction, is involved in the control of contractile protein synthesis in differentiating skeletal muscle cells and may be the chemical signal coupling increased muscular activity and the increased muscular mass. During contraction, the creatine concentration in muscle transiently increases as creatine phosphate is hydrolyzed to regenerate ATP. In isometric contraction in skeletal muscle for example, Edwards and colleagues (3) have found that nearly all of the creatine phosphate is hydrolyzed. In this case, the creatine concentration is increased about twofold, and it is this transient change in creatine concentration which is postulated to lead to increased contractile protein synthesis. If creatine is found in several intracellular compartments, as suggested by Lee and Vissher (7), local changes in concentration may be greater then twofold. A specific effect on contractile protein synthesis seems reasonable in light of the work of Rabinowitz (13) and of Page et al. (11), among others, showing disproportionate accumulation of myofibrillar and mitochondrial proteins in response to work-induced hypertrophy and thyroxin-stimulated growth. Previous experiments (5, 6) have shown that skeletal muscles cells which have differentiated in vitro or in vivo synthesize myosin heavy-chain and actin, the major myofibrillar polypeptides, faster when supplied creatine in vitro. The stimulation is specific for contractile protein synthesis since neither the rate of myosin turnover nor the rates of synthesis of noncontractile protein and DNA are affected by creatine. The experiments reported in this communication were undertaken to test whether creatine selectively stimulates contractile protein synthesis in heart as it does in skeletal muscle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号