首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2015年   1篇
  2013年   1篇
  2010年   2篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  1999年   2篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
The work was focused on the investigation of possible dependencies between the development of viral infection in plants and the presence of high heavy metal concentrations in soil. Field experiments have been conducted in order to study the development of systemic tobacco mosaic virus (TMV) infection in Lycopersicon esculentum L. cv. Miliana plants under effect of separate salts of heavy metals Cu, Zn and Pb deposited in soil. As it is shown, simultaneous effect of viral infection and heavy metals in tenfold maximum permissible concentration leads to decrease of total chlorophyll content in experiment plants mainly due to the degradation of chlorophyll a. The reduction of chlorophyll concentration under the combined influence of both stress factors was more serious comparing to the separate effect of every single factor. Plants' treatment with toxic concentrations of lead and zinc leaded to slight delay in the development of systemic TMV infection together with more than twofold increase of virus content in plants that may be an evidence of synergism between these heavy metal's and virus' effects. Contrary, copper although decreased total chlorophyll content but showed protective properties and significantly reduced amount of virus in plants.  相似文献   
2.
Quintuple mutants of Escherichia coli deficient in the C(4)-dicarboxylate carriers of aerobic and anaerobic metabolism (DctA, DcuA, DcuB, DcuC, and the DcuC homolog DcuD, or the citrate/succinate antiporter CitT) showed only poor growth on succinate (or other C(4)-dicarboxylates) under oxic conditions. At acidic pH (pH 6) the mutants regained aerobic growth on succinate, but not on fumarate. Succinate uptake by the mutants could not be saturated at physiological succinate concentrations (< or =5 mM), in contrast to the wild-type, which had a K(m) for succinate of 50 microM and a V(max) of 35 U/g dry weight at pH 6. At high substrate concentrations, the mutants showed transport activities (32 U/g dry weight) comparable to that of the wild-type. In the wild-type using DctA as the carrier, succinate uptake had a pH optimum of 6, whereas succinate uptake in the mutants was maximal at pH 5. In the mutants succinate uptake was inhibited competitively by monocarboxylic acids. Diffusion of succinate or fumarate across phospholipid membranes (liposomes) was orders of magnitude slower than the transport in the wild-type or the mutants. The data suggest that mutants deficient in DctA, DcuA, DcuB, DcuC, DcuD (or CitT) contain a carrier, possibly a monocarboxylate carrier, which is able to transport succinate, but not fumarate, at acidic pH, when succinate is present as a monoanion. Succinate uptake by this carrier was inhibited by addition of an uncoupler. Growth by fumarate respiration (requiring fumarate/succinate antiport) was also lost in the quintuple mutants, and growth was not restored at pH 6. In contrast, the efflux of succinate produced during glucose fermentation was not affected in the mutants, demonstrating that, for succinate efflux, a carrier different from, or in addition to, the known Dcu and CitT carriers is used.  相似文献   
3.
4.
5.

Background  

The distribution area of pearl millet in West and Central Africa (WCA) harbours a wide range of climatic and environmental conditions as well as diverse farmer preferences and pearl millet utilization habits which have the potential to lead to local adaptation and thereby to population structure. The objectives of our research were to (i) assess the geographical distribution of genetic diversity in pearl millet inbreds derived from landraces, (ii) assess the population structure of pearl millet from WCA, and (iii) identify those geographical parameters and environmental factors from the location at which landraces were sampled, as well as those phenotypic traits that may have affected or led to this population structure. Our study was based on a set of 145 inbred lines derived from 122 different pearl millet landraces from WCA.  相似文献   
6.
Bacteria contain secondary carriers for the uptake, exchange or efflux of C4-dicarboxylates. In aerobic bacteria, dicarboxylate transport (Dct)A carriers catalyze uptake of C4-dicarboxylates in a H(+)- or Na(+)-C4-dicarboxylate symport. Carriers of the dicarboxylate uptake (Dcu)AB family are used for electroneutral fumarate:succinate antiport which is required in anaerobic fumarate respiration. The DcuC carriers apparently function in succinate efflux during fermentation. The tripartite ATP-independent periplasmic (TRAP) transporter carriers are secondary uptake carriers requiring a periplasmic solute binding protein. For heterologous exchange of C4-dicarboxylates with other carboxylic acids (such as citrate:succinate by CitT) further types of carriers are used. The different families of C4-dicarboxylate carriers, the biochemistry of the transport reactions, and their metabolic functions are described. Many bacteria contain membraneous C4-dicarboxylate sensors which control the synthesis of enzymes for C4-dicarboxylate metabolism. The C4-dicarboxylate sensors DcuS, DctB, and DctS are histidine protein kinases and belong to different families of two-component systems. They contain periplasmic domains presumably involved in C4-dicarboxylate sensing. In DcuS the periplasmic domain seems to be essential for direct interaction with the C4-dicarboxylates. In signal perception by DctB, interaction of the C4-dicarboxylates with DctB and the DctA carrier plays an important role.  相似文献   
7.
The structure of the water-soluble, periplasmic domain of the fumarate sensor DcuS (DcuS-pd) has been determined by NMR spectroscopy in solution. DcuS is a prototype for a sensory histidine kinase with transmembrane signal transfer. DcuS belongs to the CitA family of sensors that are specific for sensing di- and tricarboxylates. The periplasmic domain is folded autonomously and shows helices at the N and the C terminus, suggesting direct linking or connection to helices in the two transmembrane regions. The structure constitutes a novel fold. The nearest structural neighbor is the Per-Arnt-Sim domain of the photoactive yellow protein that binds small molecules covalently. Residues Arg107, His110, and Arg147 are essential for fumarate sensing and are found clustered together. The structure constitutes the first periplasmic domain of a two component sensory system and is distinctly different from the aspartate sensory domain of the Tar chemotaxis sensor.  相似文献   
8.
The dcuD gene (formerly yhcL) of Escherichia coli shows significant sequence similarity only to the dcuC gene of E. coli, which encodes a C4-dicarboxylate carrier (DcuC) that functions during anaerobic growth. Inactivation of dcuD had no effect on the growth of E. coli under a large number of conditions and led to no detectable changes in phenotype. Translational dcuD′-′lacZ gene fusions were not significantly expressed in the presence of dicarboxylates or monocarboxylates under oxic or anoxic conditions. Other potential substrates such as amino sugar derivatives, amino acids, and α-aspartyl dipeptides also did not lead to expression of dcuD. Changes in medium composition, pH, ionic strength, and temperature had no significant effects on dcuD expression. A dcuD gene amplified from a natural isolate of E. coli was not expressed in wild-type and E. coli K-12 backgrounds. Cloning of dcuD behind an inducible promoter resulted in the synthesis of a protein of the expected size (49 kDa), which, however, did not complement for the loss of DcuC or other C4-dicarboxylate carriers. It is suggested that dcuD encodes a protein of the DcuC family of anaerobic C4-dicarboxylate carriers and that dcuD is not significantly expressed or is expressed only under conditions not related to carboxylate metabolism. When two adjacent open reading frames (y0585 and y0586) from Haemophilus influenzae are fused, the resulting hypothetical protein has sequence similarity to DcuC and DcuD. Received: 11 May 1999 / Accepted: 6 July 1999  相似文献   
9.
10.

Background

Chronic inflammatory diseases including inflammatory bowel disease (IBD; Crohn's disease and ulcerative colitis), psoriasis and rheumatoid arthritis (RA) afflict millions of people worldwide, but their pathogenesis is still not well understood. It is also not well known if distinct changes in gene expression characterize these diseases and if these patterns can discriminate between diseased and control patients and/or stratify the disease. The main focus of our work was the identification of novel markers that overlap among the 3 diseases or discriminate them from each other.

Methods

Diseased (n = 13, n = 15 and n = 12 in IBD, psoriasis and RA respectively) and healthy patients (n = 18) were recruited based on strict inclusion and exclusion criteria; peripheral blood samples were collected by clinicians (30 ml) in Venous Blood Vacuum Collection Tubes containing EDTA and peripheral blood mononuclear cells were separated by Ficoll gradient centrifugation. RNA was extracted using Trizol reagent. Gene expression data was obtained using TaqMan Low Density Array (TLDA) containing 96 genes that were selected by an algorithm and the statistical analyses were performed in Prism by using non-parametric Mann-Whitney U test (P-values < 0.05).

Results

Here we show that using a panel of 96 disease associated genes and measuring mRNA expression levels in peripheral blood derived mononuclear cells; we could identify disease-specific gene panels that separate each disease from healthy controls. In addition, a panel of five genes such as ADM, AQP9, CXCL2, IL10 and NAMPT discriminates between all samples from patients with chronic inflammation and healthy controls. We also found genes that stratify the diseases and separate different subtypes or different states of prognosis in each condition.

Conclusions

These findings and the identification of five universal markers of chronic inflammation suggest that these diseases have a common background in pathomechanism, but still can be separated by peripheral blood gene expression. Importantly, the identified genes can be associated with overlapping biological processes including changed inflammatory response. Gene panels based on such markers can play a major role in the development of personalized medicine, in monitoring disease progression and can lead to the identification of new potential drug targets in chronic inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号