首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   3篇
  2023年   1篇
  2015年   6篇
  2013年   2篇
  2012年   6篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  2000年   3篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1983年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
1.
2.
3.
Mouse chromosome 15   总被引:1,自引:1,他引:0  
Committee Members: R. Duncan and J. Todd.  相似文献   
4.
Phthalates are chemical plasticizers used in a variety of consumer products; in rodents, they alter testicular development, leading to decreased testosterone synthesis and maldevelopment of the reproductive tract. Here, our goals were to discover a set of biomarker genes that respond early after relatively low-dose-level dibutyl phthalate (DBP) exposure and map the responding testicular cell types. To identify testicular phthalate biomarker genes, 34 candidate genes were examined by quantitative PCR at 1, 2, 3, or 6 h after exposure of Gestational Day 19 rats to DBP dose levels ranging from 0.1 to 500 mg/kg body weight. Twelve genes (Ctgf, Cxcl10, Dusp6, Edn1, Egr1, Fos, Ier3, Junb, Nr4a1, Stc1, Thbs1, and Tnfrsf12a) were identified with increased expression by 1-3 h at 100 or 500 mg/kg DBP, and 7 of these 12 genes had increased expression by 6 h at 10 mg/kg DBP. Using in situ hybridization of fetal testis cryosections from DBP-exposed rats, the temporal cellular expression of 10 biomarker genes was determined. Genes with a robust response at 1 h (Dusp6, Egr1, Fos, and Thbs1) were induced in peritubular myoid cells. For Egr1 and Fos, the interstitial compartment also showed increased expression at 1 h. Cxcl10 and Nr4a1 were induced by 1-3 h in both sparsely located interstitial cells and peritubular myoid cells. By 3 h, Stc1 was induced in Leydig cells, and Edn1, Ier3, and Tnfrsf12a were increased in Sertoli cells. These data reveal a complex early cascade of phthalate-induced cellular responses in the fetal testis, and for the first time suggest that peritubular myoid cells are an important proximal phthalate target cell.  相似文献   
5.
Malocclusions are common in modern populations. Yet, as the study of occlusion requires an almost intact dentition in both the maxilla and mandible, searching for the ultimate cause of malocclusion is a challenge: relatively little ancient material is available for research on occlusal states. The Qafzeh 9 skull is unique, as its preserved dentition allowed us to investigate the presence and manifestations of malocclusion. The aim of this study was thus to examine the occlusal condition in the Qafzeh 9 specimen in light of modern knowledge regarding the etiology of malocclusion. We revealed a pathologic occlusion in the Qafzeh 9 skull that probably originated in the early developmental stage of the dentition, and was aggravated by forces applied by mastication. When arch continuity is interrupted due to misalignment of teeth as in this case, force transmission is not equal on both sides, causing intra-arch outcomes such as mesialization of the teeth, midline deviation, rotations and the aggravation of crowding. All are evident in the Qafzeh 9 skull: the midline deviates to the left; the incisors rotate mesio-buccally; the left segment is constricted; the left first molar is buccally positioned and the left premolars palatally tilted. The inter-arch evaluation revealed anterior cross bite with functional shift that might affect force transmission and bite force. In conclusion, the findings of the current study suggest that malocclusion of developmental origin was already present in early anatomically modern humans (AMH) (the present case being the oldest known case, dated to ca. 100,000 years); that there is no basis to the notion that early AMH had a better adjustment between teeth and jaw size; and that jaw-teeth size discrepancy could be found in prehistoric populations and is not a recent phenomenon.  相似文献   
6.
With the effort of the International Phenotyping Consortium to produce thousands of strains with conditional potential gathering steam, there is growing recognition that it must be supported by a rich toolbox of cre driver strains. The approaches to build cre strains have evolved in both sophistication and reliability, replacing first-generation strains with tools that can target individual cell populations with incredible precision and specificity. The modest set of cre drivers generated by individual labs over the past 15+?years is now growing rapidly, thanks to a number of large-scale projects to produce new cre strains for the community. The power of this growing resource, however, depends upon the proper deep characterization of strain function, as even the best designed strain can display a variety of undesirable features that must be considered in experimental design. This must be coupled with the parallel development of informatics tools to provide functional data to the user and facilitated access to the strains through public repositories. We discuss the current progress on all of these fronts and the challenges that remain to ensure the scientific community can capitalize on the tremendous number of mouse resources at their disposal.  相似文献   
7.
8.
9.
Proteins form arguably the most significant link between genotype and phenotype. Understanding the relationship between protein sequence and structure, and applying this knowledge to predict function, is difficult. One way to investigate these relationships is by considering the space of protein folds and how one might move from fold to fold through similarity, or potential evolutionary relationships. The many individual characterisations of fold space presented in the literature can tell us a lot about how well the current Protein Data Bank represents protein fold space, how convergence and divergence may affect protein evolution, how proteins affect the whole of which they are part, and how proteins themselves function. A synthesis of these different approaches and viewpoints seems the most likely way to further our knowledge of protein structure evolution and thus, facilitate improved protein structure design and prediction.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号