首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   4篇
  2022年   3篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1999年   2篇
  1997年   2篇
  1996年   1篇
  1992年   1篇
  1989年   1篇
  1971年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
The isolation of related genes with evolutionary conserved motifs by the application ofpolymerase chain reaction-based molecular biology techniques, or from database searchingstrategies, has facilitated the identification of new members of protein families. Many of theseprotein molecules will be involved in protein–protein interactions (e.g. growth factors,receptors, adhesion molecules), since such interactions are intrinsic to virtually every cellularprocess. However, the precise biological function and specific binding partners of these novelproteins are frequently unknown, hence they are known as orphan molecules.Complementary technologies are required for the identification of the specific ligands orreceptors for these and other orphan proteins (e.g., antibodies raised against crude biologicalextracts or whole cells). We describe herein several alternative strategies for the identification,purification and characterisation of orphan peptide and protein molecules, specifically thesynergistic use of micropreparative HPLC and biosensor techniques.  相似文献   
2.
Eph receptor tyrosine kinases (Ephs) function as molecular relays that interact with cell surface-bound ephrin ligands to direct the position of migrating cells. Structural studies revealed that, through two distinct contact surfaces on opposite sites of each protein, Eph and ephrin binding domains assemble into symmetric, circular heterotetramers. However, Eph signal initiation requires the assembly of higher order oligomers, suggesting additional points of contact. By screening a random library of EphA3 binding-compromised ephrin-A5 mutants, we have now determined ephrin-A5 residues that are essential for the assembly of high affinity EphA3 signaling complexes. In addition to the two interfaces predicted from the crystal structure of the homologous EphB2.ephrin-B2 complex, we identified a cluster of 10 residues on the ephrin-A5 E alpha-helix, the E-F loop, the underlying H beta-strand, as well as the nearby B-C loop, which define a distinct third surface required for oligomerization and activation of EphA3 signaling. Together with a corresponding third surface region identified recently outside of the minimal ephrin binding domain of EphA3, our findings provide experimental evidence for the essential contribution of three distinct protein-interaction interfaces to assemble functional EphA3 signaling complexes.  相似文献   
3.
Polymeric receptor-ligand complexes between interacting Eph and ephrin-expressing cells are regarded as dynamic intercellular signalling scaffolds that control cell-to-cell contact: the resulting Eph-ephrin signalling clusters function as positional cues that facilitate cell navigation and tissue patterning during normal and oncogenic development. The considerable complexity of this task, coordinating a multitude of cell movements and cellular interactions, is achieved by accurate translation of spatial information from Eph and ephrin expression gradients into fine-tuned changes in cell-cell adhesion and position. Here we review emerging evidence suggesting that the required combinatorial diversity is not only achieved by the large number of possible Eph-ephrin interactions and selective use of Eph forward and ephrin reverse signals, but in particular through the composition and signal capacity of Eph-ephrin clusters, which is adjusted dynamically to reflect overall Eph and ephrin surface densities on interacting cells. Fine-tuning is provided through multi-layered cluster assembly, where homo- and heterotypic Eph and ephrin interactions define the composition - whilst intracellular signalling feedbacks determine the size and lifetime - of signalling clusters.  相似文献   
4.

Background  

The human endometrium is unique in its capacity to remodel constantly throughout adult reproductive life. Although the processes of tissue damage and breakdown in the endometrium have been well studied, little is known of how endometrial regeneration is achieved after menstruation. Nodal, a member of the transforming growth factor-beta superfamily, regulates the processes of pattern formation and differentiation that occur during early embryo development.  相似文献   
5.
Summary The isolation of related genes with evolutionary conserved motifs by the application of polymerase chain reaction-based molecular biology techniques, or from database searching strategies, has facilitated the identification of new members of protein families. Many of these protein molecules will be involved in protein-protein interactions (e.g. growth factors, receptors, adhesion molecules), since such interactions are intrinsic to virtually every cellular process. However, the precise biological function and specific binding partners of these novel proteins are frequently unknown, hence they are known as ‘orphan’ molecules. Complementary technologies are required for the identification of the specific ligands or receptors for these and other orphan proteins (e.g., antibodies raised against crude biological extracts or whole cells). We describe herein several alternative strategies for the identification, purification and characterisation of orphan peptide and protein molecules, specifically the synergistic use of micropreparative HPLC and biosensor techniques. These authors made equivalent contributions.  相似文献   
6.
The previously described poliovirus-associated protein kinase activity phosphorylates viral proteins VP0 and VP2 as well as exogenous proteins in the presence of Mg2+. In this paper, the effect of Zn2+ on the phosphorylation reaction and the stability of the poliovirus capsid has been studied in detail and compared to that of Mg2+. Phosphorylation patterns of viral and other proteins depend on the divalent cation present. In the presence of Zn2+, phosphorylation of capsid proteins VP2 and VP4 is significantly higher while phosphorylation of VP0 and exogenous phosphate acceptor proteins is not detected. Our results indicate the activation of more than one virus-associated protein kinase by Zn2+. The ion-dependent behavior of the enzyme activities is observed independently of whether the virus was obtained from HeLa or green monkey kidney cells. The poliovirus capsid is destabilized by Zn2+. The destabilization leads to a substantially increased permeability of virus particles to ethidium bromide and RNase, concomitant with decreased infectivity of the sample. This alteration of the poliovirus capsid structure is a prerequisite for effective phosphorylation of viral capsid proteins. The increased level of phosphorylation of viral capsid proteins results in further destabilization of the viral capsid. As a result of the conformational changes, poliovirus-associated protein kinase activities dissociate from the virus particle. High-performance liquid chromatography-purified viral protein VP2 is phosphorylated by the released enzymes on serine, threonine, and tyrosine in the presence of Zn2+. We suggest that the destabilizing effect of phosphorylation on the viral capsid plays a role in uncoating of poliovirus.  相似文献   
7.
I. Lackmann 《Planta》1971,98(3):258-269
Summary The biosynthesis of anthocyanin in tissue cultures and intact seedlings of Haplopappus gracilis is a light-dependent reaction which can be induced by blue light only. Anthocyanin appeared in all organs of the seedling.Wounding of the plant led to an increase in the content of anthocyanin due to increased anthocyanin synthesis in the cotyledons.The action spectra of anthocyanin formation in tissue cultures and intact seedlings have two peaks, one at 438 nm and the other at 372 nm. The limit of activity in the direction of longer wavelengths lies between 474 and 493 nm. Red light of short and long wavelength is ineffective in the induction of pigment synthesis. The photoreceptor of the light reaction is supposed to be a yellow pigment (flavoprotein or carotinoid). In contrast to the intact plants, isolated cotyledons and wounded seedlings are able to form anthocyanin not only in the blue region but also during irradiation with red light of high intensity. The action spectrum of anthocyanin synthesis in the isolated cotyledons has a marked maximum at about 440 nm and a second one at about 660 nm. A little activity can be observed throughout the visible spectrum. The pigment synthesis induced by red light can be completely suppressed by DCMU, an inhibitor of photosynthesis. This indicates that in the case of the activity in the red light caused by wounding chlorophyll serves as photoreceptor.The anthocyanin synthesis in tissue cultures and seedlings could not be influenced by low energy radiation in the red or in the far red region, even after induction of anthocyanin synthesis by blue light of high intensity. Therefore it seems that the phytochrome system is not involved in anthocyanin synthesis in Haplopappus gracilis.  相似文献   
8.
Prosurvival Bcl-2-like proteins, like Bcl-w, are thought to function on organelles such as the mitochondrion and to be targeted to them by their hydrophobic COOH-terminal domain. We unexpectedly found, however, that the membrane association of Bcl-w was enhanced during apoptosis. In healthy cells, Bcl-w was loosely attached to the mitochondrial membrane, but it was converted into an integral membrane protein by cytotoxic signals that induce binding of BH3-only proteins, such as Bim, or by the addition of BH3 peptides to lysates. As the structure of Bcl-w has revealed that its COOH-terminal domain occupies the hydrophobic groove where BH3 ligands bind, displacement of that domain by a BH3 ligand would displace the hydrophobic COOH-terminal residues, allowing their insertion into the membrane. To determine whether BH3 ligation is sufficient to induce the enhanced membrane affinity, or to render Bcl-w proapoptotic, we mimicked their complex by tethering the Bim BH3 domain to the NH2 terminus of Bcl-w. The chimera indeed bound avidly to membranes, in a fashion requiring the COOH-terminal domain, but neither promoted nor inhibited apoptosis. These results suggest that ligation of a proapoptotic BH3-only protein alters the conformation of Bcl-w, enhances membrane association, and neutralizes its survival function.  相似文献   
9.
Leukocyte recruitment to inflammatory foci is generally associated with cellular activation. Recent evidence suggests that chemotactic agents can be divided into two classes, “classical chemoattractants” such as FMLP, C5a, and IL-8, which stimulate directed migration and activation events and “pure chemoattractants” such as TGF-β1 which influence actin polymerisation and movement but not oxidative burst and associated granular enzyme release. The studies reported here demonstrate that the murine S100 chemoattractant protein, CP-10, belongs to the “non-classical” group. Despite its potent chemotactic activity for neutrophils and monocytes/macrophages, CP-10 failed to increase [Ca2+]i in human or mouse PMN, although chemotaxis was inhibited by pertussis toxin, confirming the suggestion of a novel Ca2+-independent G-protein-coupled pathway for post-receptor signal transduction triggered by “pure chemoattractants.” The co-ordinated up-regulation of Mac-1 and down-regulation of L-selectin induced by FMLP on human PMN in vitro was not observed with CP-10. Quantitative changes in immediate (30 s) actin polymerisation occurred with FMLP and CP-10-treated human PMN. The relative F-actin increases induced in WEHI 265 monocytoid cells by FMLP and CP-10 was optimal at 60 s and declined over 120 s. F-actin changes reflected the concentration and potencies of the agonists required to provoke chemotaxis. After 90 min, CP-10 profoundly altered cell shape and increased both cell size and F-actin within pseudopodia. These changes are typical of those mediating leukocyte deformability, and CP-10 may mediate leukocyte retention within microcapillaries and thereby contribute to the initiation of inflammation in vascular beds. © 1996 Wiley-Liss, Inc.  相似文献   
10.
Eph receptors interact with ephrin ligands on adjacent cells to facilitate tissue patterning during normal and oncogenic development, in which unscheduled expression and somatic mutations contribute to tumor progression. EphA and B subtypes preferentially bind A- and B-type ephrins, respectively, resulting in receptor complexes that propagate via homotypic Eph-Eph interactions. We now show that EphA and B receptors cocluster, such that specific ligation of one receptor promotes recruitment and cross-activation of the other. Remarkably, coexpression of a kinase-inactive mutant EphA3 with wild-type EphB2 can cause either cross-activation or cross-inhibition, depending on relative expression. Our findings indicate that cellular responses to ephrin contact are determined by the EphA/EphB receptor profile on a given cell rather than the individual Eph subclass. Importantly, they imply that in tumor cells coexpressing different Ephs, functional mutations in one subtype may cause phenotypes that are a result of altered signaling from heterotypic rather from homotypic Eph clusters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号